

Calcium 40.078 2-8-8-2	Scandium 44.95908 2-8-9-2	Titanium 47.847 2-8-10-2	Vanadium 50.9415 2-8-10-1	Chromium 51.9961 2-8-10-1	Manganese 54.938044 2-8-10-2	Iron 55.845 2-8-9-2	Cobalt 58.933 2-8-10-2	Nickel 58.493 2-8-10-1	Copper 63.546 2-8-10-1	Zinc 65.38 2-8-9-2	Gallium 69.723 2-8-9-3	Germanium 72.630
Sr Strontium 41.742 2-8-10-2	Y Yttrium 48.91054 2-8-10-2	Zr Zirconium 91.224 2-8-10-2	Nb Niobium 92.90437 2-8-10-2	Mo Molybdenum 95.95 2-8-10-3-1	Tc Technetium (98) 2-8-10-3-2	Ru Ruthenium 101.07 2-8-10-15-1	Rh Rhodium 102.91 2-8-10-16-1	Pd Palladium 104.42 2-8-10-18	Ag Silver 107.87 2-8-10-18			
Ba Barium 137.327 2-8-10-8-2	57-71 Lanthanides	Hf Hafnium 178.49 2-8-10-32-10-2	Ta Tantalum 180.94798 2-8-10-32-12-2	W Tungsten 183.84 2-8-10-32-13-2	Re Rhenium 186.21 2-8-10-32-13-2	Os Osmium 190.23 2-8-10-32-13-2	Ir Iridium 192.22 2-8-10-32-15-2					
88 Ra 89-103 Actinides	104 Rf 105 Db 106 Sg											

Third grade

Chemistry

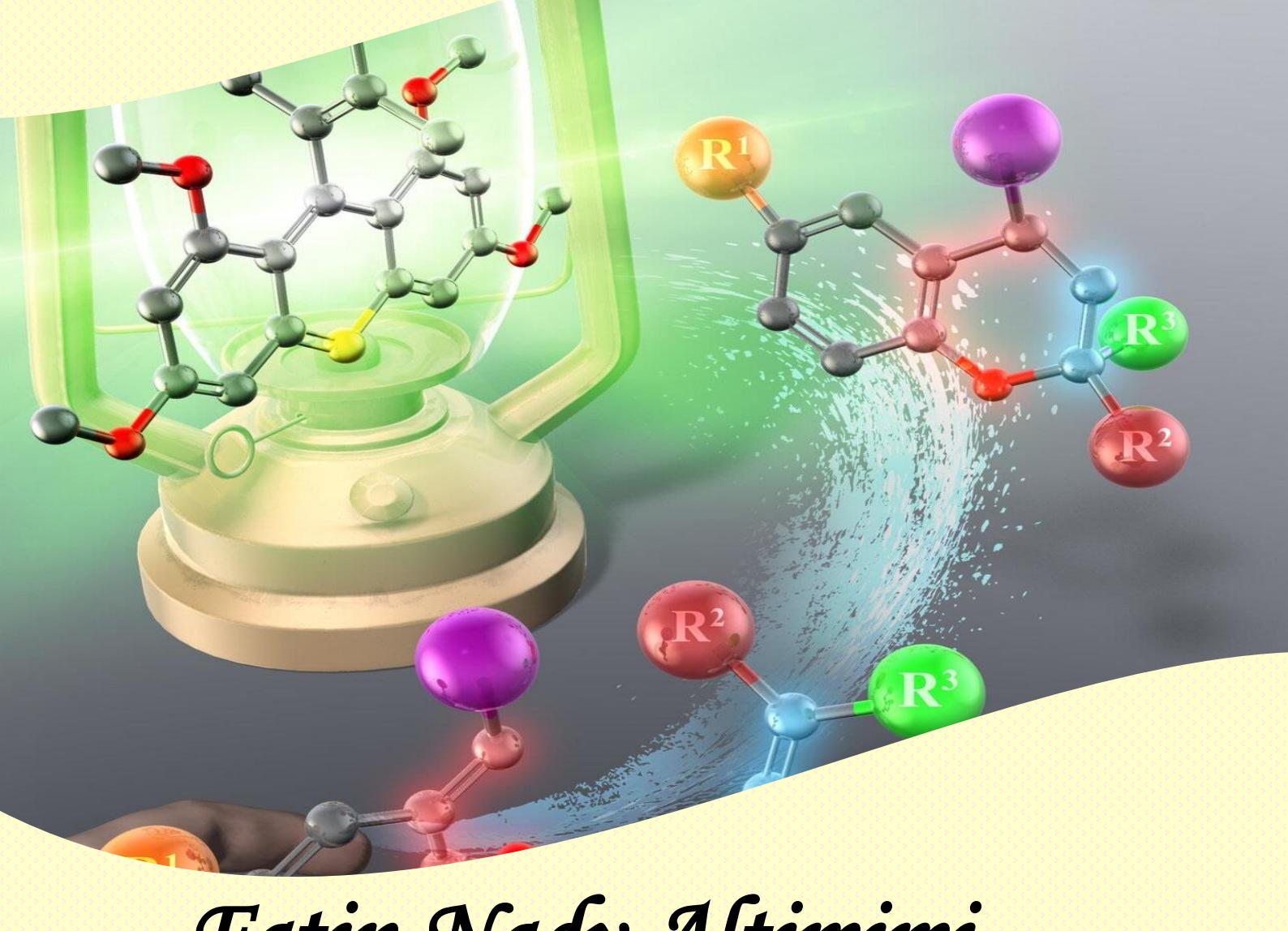
مدارس المتميزين ونانوية كلية بغداد

Part Two

السخن : فاتح المحيي

كن متميز مع المتميزين

31 Zn Zinc 65.38 2-8-10-3	32 Ga Gallium 69.723 2-8-9-4	33 Ge Germanium 72.630 2-8-10-4	34 As Arsenic 74.922 2-8-10-5	35 Se Selenium 78.971 2-8-10-6	36 Br Bromine 79.904 2-8-9-7
37 Rb 38-41 Actinides	40 Nb Niobium (248) 2-8-10-32-32-11-2	41 Mo Molybdenum (249) 2-8-10-32-32-12-2	42 Tc Technetium (98) 2-8-10-32-13-2	43 Ru Ruthenium 101.07 2-8-10-15-1	44 Rh Rhodium 102.91 2-8-10-16-1
45 Pd Palladium 104.42 2-8-10-18	46 Ag Silver 107.87 2-8-10-18	47 Cd Cadmium 112.41 2-8-10-18-2	48 In Indium 114.82 2-8-10-18-3	49 Sn Tin 118.71 2-8-10-18-4	50 Sb Antimony 121.76 2-8-10-18-5
51 Te Tellurium 127.60 2-8-10-18-6	52 Po Polonium (209) 2-8-10-18-19-6	53 I Iodine 126.90 2-8-10-18-9-7	54 Xe Xenon (131.29) 2-8-10-18-19-20-7		
55 Rn Radium (222) 2-8-10-18-19-20-7	56 Ba Barium 137.327 2-8-10-8-2	57-71 Lanthanides	58 Hf Hafnium 178.49 2-8-10-32-10-2	59 Ta Tantalum 180.94798 2-8-10-32-12-2	60 W Tungsten 183.84 2-8-10-32-13-2
61 Nb Niobium 92.90437 2-8-10-12-1	62 Nb Niobium 92.90437 2-8-10-12-1	63 Nb Niobium 92.90437 2-8-10-12-1	64 Nb Niobium 92.90437 2-8-10-12-1	65 Nb Niobium 92.90437 2-8-10-12-1	66 Nb Niobium 92.90437 2-8-10-12-1


A detailed image of the periodic table of elements, showing the first 48 elements (Scandium to Gallium) in a yellow-themed layout. The elements are arranged in their respective groups, with their atomic numbers, names, and atomic weights. The table is set against a yellow background with a white grid. The text is in a bold, sans-serif font. The image is oriented vertically on the left side of the page.

Third Grade

Chemistry

Chapter Six

Organic chemistry

Faithfully Alluring

بِسْمِ اللّٰهِ الرَّحْمٰنِ الرَّحِيْمِ

Introduction

Organic chemistry: It is one of branches of chemistry that study the general properties of carbon compounds .

Q : Why carbon has considerable importance unique features ?

Ans : Due to it is the major and principal element in the molecules of living organisms and their nutrition. It also contributes in several aspects of our daily live drugs, fragrances and paints .

علل : لماذا يتمتع الكربون بميزات فريدة ذات أهمية كبيرة ؟

الجواب : لأنه عنصر رئيسي وأساسي في جزيئات الكائنات الحية وتحفيتها. كم يساهم في العديد من جوانب حياتنا اليومية من الأدوية والعطور والأصباغ .

Importance of organic compound

Q : What are the importance of organic compounds are in our lives ?

وزاري مكرر

- ① All forms of basic food materials for human and animals, which are proteins, carbohydrates, animal fat and plant oil .
- ② Many natural and synthetic products like cotton , wool, natural and synthetic silk, paper and plastics.
- ③ Fuel like petroleum, natural gas and wood.
- ④ Medical drugs as well as vitamins, hormones and enzymes.

سؤال : ما هي أهمية المركبات العضوية ؟

- 1 . كل اصناف المواد الغذائية الرئيسية للانسان والحيوان وهي البروتينات والكاربوهيدرات والزيوت الحيوانية.
- 2 . كثير من المنتوجات الطبيعية والصناعية كالقطن والصوف والحرير الطبيعي والصناعي والورق والبلاستيك.
- 3 . اصناف الوقود مثل النفط والغاز الطبيعي والخشب . 4 . العقاقير الطبية وكذلك الفيتامينات والهرمونات والازيمات .

Wajd al-karibon fi al-mulkat al-ussurya : وجود الكاربون في المركبات العضوية

Exercise 6 – 1 : How can you prove presence of carbon in organic compounds experimentally

وزاري مكرر

- ① When lighting a candle or a piece of paper or (any organic material), carbon dioxide CO_2 is released which can be found by adding Calcium Hydroxide solution $Ca(OH)_2$ which makes it turbid , whereby calcium carbonates are formed $CaCO_3$.
- ② When sugar, an organic substance, is burnt in a test tube, a black substance is formed which is carbon. This indicates that carbon is found in sugar as component.

يوجد الكاربون في المركبات العضوية ويمكن اثبات ذلك كما يلي :

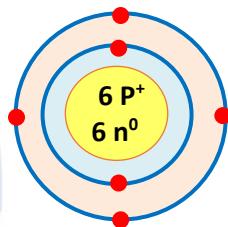
1. عند اشعال شمعة او قطعة من الورق او (اي مادة عضوية) يتحرر غاز ثاني اوكسيد الكاربون CO_2 الذي يمكن الكشف عنه بامراره على محلول هيدروكسيد الكالسيوم (ماء البحر 2) $Ca(OH)_2$ فيعكره حيث تتكون كاربونات الكالسيوم. $CaCO_3$
2. عند حرق كمية من السكر وهو مادة عضوية في انبوبة اختبار نلاحظ تخلف مادة سوداء هي الكاربون. وهذا يدل على ان الكاربون يدخل في تركيب السكر.

General feature of organic compounds

Q : What are the feature of organic compounds in general ? **وَذَارِي**

Ans: ① All organic compounds contain carbon in their compositions and are subject to decomposition or combustion by heating , particularly if heated to high temperature.

② Atoms in the organic compounds are bonded by **covalent bonds**, making them react slowly


③ Many organic compounds do not dissolve in water but soluble in some organic liquids such as alcohol, ether, acetone and carbon tetrachloride .

سؤال : أذكر صفات المركبات العضوية ؟

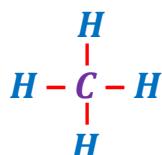
1. كل المركبات العضوية تحتوي على الكاربون في تركيبها وهي قابلة للاحتراق أو التحلل بالتسخين ولا سيما اذا تم تسخينها لدرجة حرارة عالية

2. غالباً ما ترتبط الذرات في المركبات العضوية بواطر تساهمية تجعلها تتفاعل بشكل بطيء ..

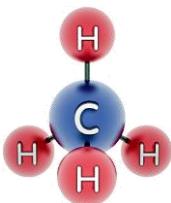
3. الكثير من المركبات العضوية لاتذوب في الماء ولكنها تذوب في بعض السوائل العضوية كالكحول والإيثر والاسيتون ورباعي كلوريد الكاربون.

Covalent bonds of carbon atoms in Organic Compounds

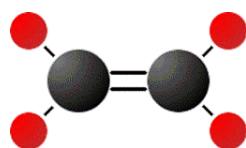
Carbon has an atomic number of (6) the outer shell (valence shell) of carbon atom contains four electrons. Therefore, for the carbon atom to reach stability it must share the four valency electrons with other atoms, so the number of electrons surrounding each carbon atom would be eight.


العدد الذري للكاربون 6 في الغلاف الخارجي (غلاف التكافؤ) لذرة الكاربون يحتوي أربعه كترونات . لذلك لكي تصل ذرة الكاربون لحالة الاستقرار تشارك بالكترونات تكافؤها الأربعه مع ذرات اخرى بحيث يصبح عدد الالكترونات المحيطة بكل ذرة كاربون ثمانية كترونات.

Each valence bond needs two electrons (one from each atom) .


أنتبه : كل اصرة تساهمية تحتاج الى كترونين (الكترون من كل ذرة .)

Types of bonds in organic compounds Compound



Methane molecule : Molecule **CH₄** ,

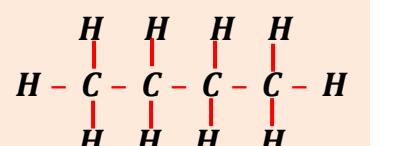
Carbon atoms bind by four single bonds with hydrogen

Ethylene: A double bond and 4 single bonds

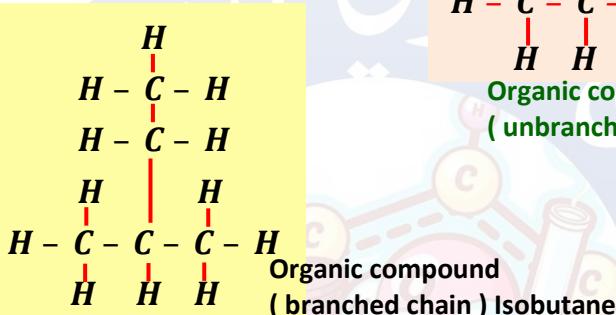
Acetylene : One triple bond and two single bonds: **H – C ≡ C – H**

Q : Why there are thousands of organic compounds in nature, and can also be synthesized as well?

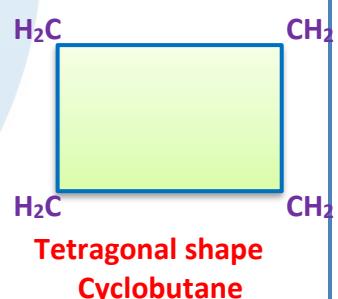
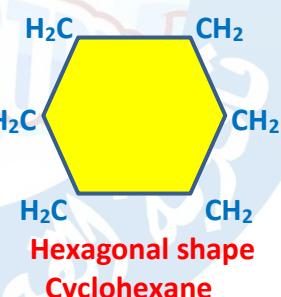
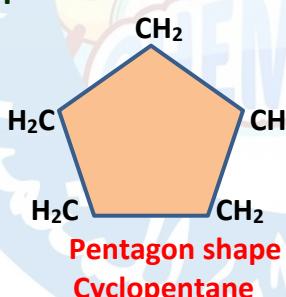
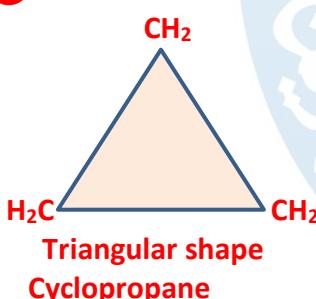
Ans : ① Various bonding possibilities for carbon atom in compounds , add versatility to this atom in having various valence bonds .

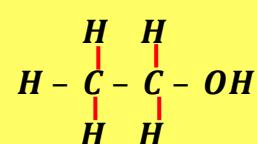

② Carbon atom's ability to bond with each other to form open or closed chains (rings)

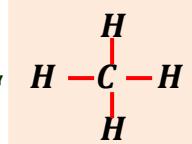
③ These chains include single, double or triple bonds .

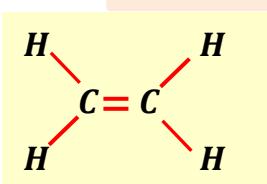

عل : هناك مئات الآلاف من المركبات العضوية الموجودة في طبيعة والتي يمكن تحضيرها أيضا ؟
 ج / بسبب . 1 / اختلاف التأثير والذى يعطى قابلية للكربون على تكوين اواصر تساهمية مختلفة .
 2 . قدرة ذرات الكربون على الارتباط بعضها ببعض لتكوين سلاسل مفتوحة او مغلقة .
 3 . تشمل هذه السلاسل روابط مفردة او مزدوجة او ثلاثية .

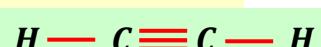
The following examples illustrate various forms of organic compounds:





1 Open chain : a . Unbranched such as butane


b . Branched such as isobutane


2 Closed chains : examples :


3 Organic compound contain oxygen such as ethyl alcohol


4 Organic compound with single covalent bond "methane "

5 Organic compound with double bond " ethylene "

6 Organic compound with triple bond " acetylene "

Hydrocarbons

Q/ What are the hydrocarbon compounds ?

Hydrocarbons: It contains only carbon and hydrogen only , either saturated or unsaturated .

First : Saturated hydrocarbons : Containing single covalent bonds called alkanes such as

methane CH_4 . "تعريف الالكانات"

Second : Unsaturated hydrocarbons: two types :

① **Alkenes:** Compounds which are contains double bonds between carbon atoms .

As ethylene molecule C_2H_4 .

② **Alkynes :** Compounds which are has triple bond between two carbon atoms . As Acetylene C_2H_2 .

الهيدروكربونات : هي مركبات تتكون من الكربون والهيدروجين فقط . وتكون اما مشبعة أو غير مشبعة.

(أ) **الهيدروكربونات المشبعة :** تحتوي على او اواصر تساهمية مفردة وتسمي الالكانات مثل الميثان. CH_4

(ب) **الهيدروكربونات غير المشبعة :** وتكون على نوعين :

1. **الألكيونات** وهي تحتوي على او اواصر تساهمية مزدوجة مثل الايثيلين. C_2H_4

2. **الألكينات** وهي تحتوي على او اواصر تساهمية ثلاثة مثل الاستيلين . C_2H_2

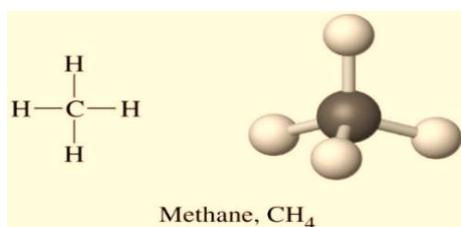
Some Organic Compounds

Methane: It is the simplest hydrocarbon compound, its molecular formula is CH_4 , atom is bonded with 4 hydrogen atoms in a single bonds.

الميثان : هو ابسط مركب هايدروكربوني صيغته الجزيئية CH_4 حيث ترتبط ذرة الكربون فيه مع 4 ذرات من الهيدروجين باواصر تساهمية منفردة .

Q : Where is methane Existence in nature ?

① It is found in large amounts as natural gas which accompanies crude petroleum.

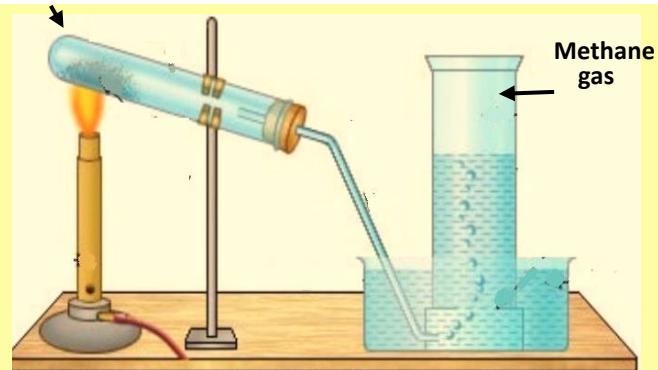

② It is emitted from cracks of coal mines.

③ It is also formed when organic materials are decomposed in stagnant waters of ponds and swamps.

1. يوجد بنسبة كبيرة في الغاز الطبيعي المصاحب لاستخراج النفط الخام.

2. ينبع من بعض شقوق مناجم الفحم.

3. يكون نتيجة تحلل المواد العضوية في مياه البرك والمستنقعات الراكدة.



Q: How methane is prepared in the laboratory?

Ans: Methane is prepared whereby sodium acetates is heated at high temperature along with sodium hydroxide or calcium hydroxide (because the mixture will have little effect on glass and ensures higher melting point for sodium hydroxide) in a test tube , the resulting gas is collected by removing the water further down.

sodium acetate and Sodium Hydroxide

س/ كيف يتم تحضير الميثان مختبريا؟

يحضر غاز الميثان باستخدام الجهاز المبين في الشكل أدناه حيث تسخن خلات الصوديوم تسخيناً شديداً مع هيدروكسيد الصوديوم أو هيدروكسيد الكالسيوم (لأن الخليط يكون أقل تأثيراً على الزجاج وعلى درجة انصهار من هيدروكسيد الصوديوم) في أنبوبة اختبار مناسبة ويجمع الغاز الناتج بازاحة الماء إلى الأسفل.

Why: A mixture of sodium acetate with sodium hydroxide or calcium hydroxide is used when preparing methane gas in the laboratory ?

Ans : Because the mixture will have little effect on glass and ensures higher melting point for sodium hydroxide.

Q: What are the physical and chemical properties of Methane gas?

- ① Colorless and odorless .
- ② Highly insoluble in water .

③ Flammable, smokeless flame, releasing carbon dioxide CO_2 and water vapor and energy as in the following equation: $CH_4 + 2O_2 \xrightarrow{\Delta} CO_2 + 2H_2O + \text{energy}$

Methane Oxygen carbon dioxide water

س / خواص غاز الميثان ؟

1. عديم اللون والرائحة.

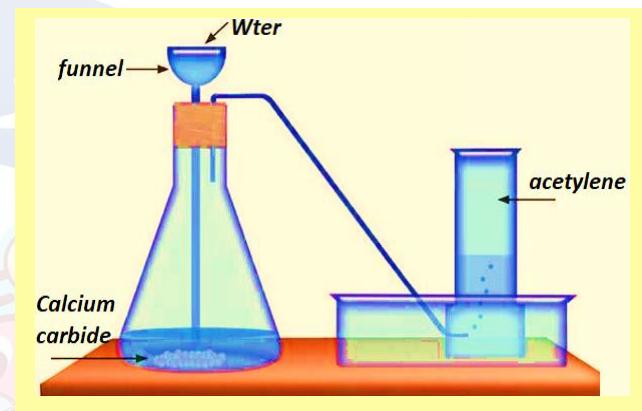
2. قليل الذوبان جداً في الماء

3. قابل للاشتعال وبلهب غير داخن مكوناً غاز ثاني أوكسيد الكاربون CO_2 وبخار الماء H_2O محرراً طاقة .

Acetylen

Acetylene: It is a hydro carbonic compound with the molecular formula of (C_2H_2) in which the two carbon atoms combine with each other in triple covalent bonds. It is an example of the unsaturated hydrocarbons called "Alkynes".

الأستيلين : مركب هيدروكاربوني صيغته الجزيئية C_2H_2 ، ترتبط ذرتا الكاربون فيه باصرة تساهمية ثلاثة وهو مثال على صنف الهيدروكاربونات غير المشبعة تسمى الاكاييانات.


Q: How to prepare Acetylene Gases in the Laboratory?

Acetylene can be produced by the reaction of calcium carbide, CaC_2 with water.

It is an industrial process of acetylene production also.

In the laboratory, acetylene can be produced by putting calcium carbide in an Erlenmeyer flask. Water is added very slowly and gradually using a tube.

The reaction which happens immediately produces the gaseous acetylene which can be collected from the bottle by removing water downward.

تحضيره : يحضر الأستيلين مختبريا وصناعيا من تفاعل كاربيد الكالسيوم CaC_2 مع الماء. يوضع كاربيد الكالسيوم في دورق التحضير ويضاف اليه الماء من خلال الأنوب المقمع ببطء وبصورة تدريجية . يحدث التفاعل بصورة مباشرة وينتج غاز الأستيلين الذي يجمع من القنينة بازاحة الماء إلى الأسفل.

Q: What are the Properties of Acetylene?

- ① It is a colorless gas with a bad smell. It smells like garlic.
- ② It is insoluble in water.
- ③ Combustion of acetylene forms a smoky flame.
- ④ It burns with oxygen gas in making a faded blue flame and high temperature:

- ⑤ It reacts with the red bromine water and removes its color.

خواص الأستيلين :

1. غاز عديم اللون ذو رائحة كريهة تشبه رائحة الثوم.
2. لاينذوب في الماء.
3. يشتعل في الهواء بلهب داخن.
4. يشتعل في الاوكسجين بلهب ازرق باهت مع تولد حرارة عالية
5. يتفاعل مع ماء البروم الاحمر ويزيل لونه .

Q: How to distinguish between acetylene and gaseous methane?

Ans : Methane does not react with the red bromine water and color does not disappear.

Acetylene, reacts with the red bromine water and the color disappears:

Acetylene + red bromine water \rightarrow red color disappears

Methane + red bromine water \rightarrow red color don't disappear

سؤال : كيف تميز بين غاز الأستيلين وغاز الميثان؟

الجواب : باستخدام تفاعل الماء مع البروم الأحمر حيث يزيل الأستيلين اللون الأحمر لماء البروم ولا يؤثر فيه غاز الميثان

حسب المعادلات اللفظية الآتية:

Uses of Acetylene

Q : What are the uses of acetylene?

- 1 The mixture of the gas and oxygen is used to produce the oxyacetylene for cutting or welding metals.
- 2 The gas is used as a raw material in the production of rubber, plastics and acetic acid.

أستعمالات الأستيلين :

- 1 يستعمل مزيج الغاز والأوكسجين في توليد الشعلة المسماة بالشعلة الأوكسي استيلينية التي تستخدم في قطع المعادن أو لحيمها.
2. يستعمل الغاز كمادة أولية في صناعة أنواع من المطاط والبلاستيك وحامض الخليك.

Ethanol (Ethyl Alcohol) (C_2H_5OH)

Alcohol is an Arabic word from which the Latin word "Alcohol" is derived. It was Known long time before and was produced then by fermenting molasses, dates or grapes in isolated air from air.

الكحول كلمة عربية (منها اشتق اسمها اللاتيني **Alcohol**) وهو مادة معروفة منذ امد طويل وكان يحضر من تخمير дбىس او التمر او عصير العنب بمعزل عن الهواء .

Q : Explain the process of turning sugar into alcohol with fermentation with equation?

Ans : By the effect of zymase enzyme, it occurs naturally in yeast sugar is converted into simpler sugar which in turn is converted into carbon dioxide and ethanol by effect of enzyme. Alcohol is then separated from its aqueous solution by the process of distillation.

سؤال : أشرح عملية تحول السكر إلى كحول بالتخمير مع المعادلة اللفظية؟

ج / يتحول السكر بفعل إنزيم الخميرة إلى سكر بسيط ثم يتحول السكر البسيط بفعل إنزيم الزايميز إلى كحول الأثيل وثنائي أوكسيد الكاربون ثم يفصل الكحول من محلوله المائي بالتنقير .

Production of ethyl alcohol Industrial

Ethanol or ethyl alcohol can be produced industrially from oil products through the reaction of gaseous ethylene (C_2H_4) with water with the existence of concentrated sulfuric acid and other factor such as heat and pressure.

تحضير كحول الأثيل (الإيثanol) صناعيا يحضر كحول الأثيل صناعيا من مشتقات النفط بتفاعل غاز الأثيلين (C_2H_4) مع الماء بوجود حامض الكبريتิก المركز وعوامل مساعدة اخرى مثل درجة حرارة وضغط.

Properties of Ethanol (Ethyl Alcohol)

Q : What are the physical properties of ethyl alcohol?

- ① It is a liquid with a boiling point lower than the boiling point of water. Its freezing point is very low.
- ② It is a volatile liquid with a very distinguishing smell.
- ③ It is an active solvent to many organic substances.
- ④ Complete combustion of ethanol produces a faded blue flame and forms carbon dioxide (CO_2) and water vapor.

ما هي الخواص الفيزيائية لـكحول الأثيل؟

- 1 . سائل له درجة غليان اقل من درجة غليان الماء ويتجسد في درجة حرارة واطنة.
- 2 . سائل ذو رائحة مميزة.
- 3 . مذيب جيد لكثير من المواد العضوية.
- 4 . يشتعل بلهب ازرق باهت مكوناً CO_2 وبخار الماء

Uses of Ethanol (Ethyl alcohol):

Q : What are uses of ethyl alcohol ?

- ① Ethyl alcohol is used as a raw material in many industries especially cosmetics, commercial rubber, ink , many types of paints and perfumes.
- ② It is used in the production of alcoholic beverages and drugs.
- ③ It is used as a motor fuel through mixing it with other oil products.
- ④ It is used as a sterilizer by mixing it with some iodine and it's poisonous.
- ⑤ Ethyl alcohol is very cheap for industrial purposes.

- 1 . يستعمل كحول الأثيل كمادة أولية في الكثير من الصناعات ولاسيما مواد التجميل والعطور وانواع الوارنيش والحربر والمطاط الصناعي.
- 2 . يستعمل في كثير من المركبات الدوائية والمشروبات الروحية.
- 3 . استعماله كوقود وذلك بخلطه مع مشتقات نفطية اخرى.
- 4 . يخلط مع قليل من اليود ليكون محلول يستخدم لتعقيم الجروح وهو سام.
- 5 . بيع كحول الأثيل بثمن رخيص للاغراض الصناعية.

Q : How to undrinkable alcohol?

Ans: It is undrinkable as some, poisonous substance like methyl alcohol are added to it and by then known as inactivated alcohol (sperto) . Also, some dyeing substance are added to it to make its color different from pure ethyl alcohol.

ويُعطل عن الشرب ويُعرف عند ذلك بالكحول المعطل (السبيرتو) ويتم ذلك بإضافة بعض المواد السامة إليه مثل كحول الميثيل وبعض الأصباغ لغرض تمييزه عن كحول الأثيل النقي.

Q: Define undrinkable (inactivated) alcohol?

It is ethanol alcohol after adding poisonous substance like methyl alcohol are added to it , also, some dyeing substance are added to it to make its color different from pure ethyl alcohol.

Effect of ethyl alcohol on Human Being

- ① Drinking alcohol disturbs the consistency between the muscular and nervous systems.
- ② Very clear changes in mood, recognition and feelings are noted.
- ③ These changes in the human body caused by alcohol slow down the functions of nerve cells in the nervous system.
- ④ Addiction to alcohol is detrimental to health.
- ⑤ Addicted people go to hospitals and health institution in order to be treated to stop addiction because of its lethal health damages rather than its social consequences.
- ⑥ People addicted to alcohol behave strangely and sometimes dangerously.

1. شرب الكحول يعمل على عدم ترابط عمل الجهاز العضلي مع الجهاز العصبي .
2. تحصل تغيرات واضحة في الشعور والمزاج والادراك الحسي .
3. هذه التغيرات في جسم الإنسان التي يسببها الكحول تبطئ وظائف الخلايا العصبية في الجهاز العصبي.
4. الادمان على شربه مضر جداً بصحة الإنسان.
5. المدمنون على الكحول يتزدرون على عيادات الاطباء والمستشفيات لكثره الامراض التي يجلبها .
6. يتصرف مدمنوا الكحول بغرابة وأحياناً بشكل خطير.

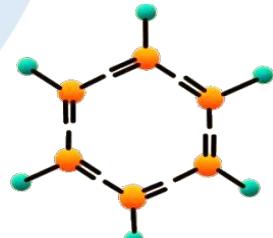
Q : Why do some governments impose high taxes on alcohol?

Ans: To reduce alcohol consumption and to eliminate its social, health and economic damages

سؤال : تفرض بعض الحكومات ضرائب عالية على الكحولات ؟

ج : للتقليل من استعماله كمشروب والتخفيف من اضراره الاجتماعية والصحية والاقتصادية.

Acetic Acid (CH_3COOH)**Industrial Preparation:****Q: How can acetic acid be prepared industrially?****Acetic acid is produced industrially by the reaction of acetylene with water using sulfuric acid and other facilitating factors. A chain reaction occurs and finally produces acetic acid.****تحضيره صناعياً :**


يحضر حامض الخليك صناعياً على نطاق واسع من تفاعل الاستيلين مع الماء بوجود حامض الكبريتิก وعوامل مساعدة أخرى حيث تجري سلسلة من التفاعلات تؤدي إلى تكوين حامض الخليك.

Properties of Acetic Acid:**Q : What are the properties of acetic acid ?**

- ① It is a liquid at room temperature.
- ② It is a volatile compound.
- ③ It reacts with sodium hydroxide to form water soluble sodium acetate.
- ④ It can be mixed with water at any rate .

خواص حامض الخليك

- 1 . سائل في درجات الحرارة الاعتيادية إلا أنه يتجمد في ($18^{\circ}C$) إلى ما يشبه الثلج.
- 2 . ذو رائحة نفاذة.
- 3 . يتفاعل مع هيدروكسيد الصوديوم مكوناً ملح خلات الصوديوم الذائبة في الماء.
- 4 . يمتص بالماء بأية نسبة كانت.

Benzene (C_6H_6)**Q : How can benzene be extracted?****Ans : Benzene can be extracted from coal tar which is one of petrol****products and is fugitive (vapor quickly) .**

هو مركب هيدروكربوني مكون من كاربون و هيدروجين ويمكن الحصول عليه من قطران الفحم الذي يعد أحد منتجات البترول .

Q : Define Benzene ?**Benzene is a hydrocarbonic compound consisting of carbon and hydrogen, and is fugitive (vapor quickly) .****Benzene is the simplest compound in the group of hydrocarbons which are called " Aromatic Hydrocarbons" because of their distinctive smells.**

البنزين مركب هيدروكربوني يتكون من الكربون والهيدروجين، وهو مركب متطاير (سريع التبخر) .

يعتبر البنزين أبسط مركب لسلسلة الهيدروكربونات التي تدعى بالهيدروكربونات العطرية (الأروماتية) نظراً لتميز افراد هذه السلسلة بروائح خاصة .

Properties of Benzene :

Q : enumerate the properties of benzene ?

- ① It is fugitive vapor quickly .
- ② Its complete combustion result in a very smoky flame because of the high percentage of carbon.
- ③ Benzene vapors very quickly and boils at (80°C).
- ④ It is not soluble in water .

1. سائل سريع التبخر .
2. يشتعل بلهب داخن جداً لاحتوائه على نسبة كاربون عالية .
3. البنزين سائل سريع التبخر يغلي في (80°C) .
4. لا يذوب في الماء .

Explain: Why does benzene burn in a very smoky flame?

Ans : Because of the high percentage of carbon.

علل : يشتعل البنزين بلهب داخن جداً ؟

الجواب : لاحتوائه على نسبة كاربون عالية .

Q : Why is benzene considered an Aromatic Hydrocarbons compound?

Ans : Because of their distinctive smells.

علل : يعتبر البنزين من مركبات الهيدروكاريونات العطرية (الاروماتية) .

الجواب : نظراً لتميز افراد هذه السلسلة بروائح خاصة .

Q: What are the uses of gasoline?

- ① Used as an important industrial solvent to paints and many important industrial products.
- ② It is also used in the production of insecticides, nylon , modern detergents, etc.

استعمالات البنزين :

- 1 . يستعمل كمذيب للاصباغ والوارنيش ولكثير من المشتقات المهمة صناعياً .
- 2 . في انتاج المبيدات للحشرات في صناعة النايلون في مساحيق التنظيف الحديثة وغير ذلك .

Chapter Equation

6

1. How can methane gas be produced in laboratory, draw shape of equipment's and write reactions?

Ans : Page " 93 "

1. كيف يمكن إنتاج غاز الميثان في المخبر ، مع الرسم وكتابة المعادلة الكيميائية؟

2 . Give example about following terms **Branched chain, unbranched chain , cycle .**

2. أعط مثلاً للمصطلحات التالية: سلسلة متفرعة ، سلسلة غير متفرعة ، حلقة.

Ans : Page " 91 "

3 . Chose the most appropriate of the brackets that complete the following expressions

a. All organic compounds contain one of the following element in their composition :

Hydroge, , oxygen . nitrogen , sulfur , carbon .

carbon

انتبه الجواب الصحيح
المظلل باللون الأصفر

b. The bonding between two carbon atoms in the saturated hydrocarbons is a

a. Single b. double c. triple

20. التآثر بين ذرتى الكاربون في الهيدروكاربونات المشبعة هو

ا. مفرد ب. مزدوج ج. الثلاثي

C . The gas is found in large amount in natural gas is

Methane , Ethylene , Acetylene .

Methan

d . In acetylene; two carbon atoms are bound each other by

a. Single covalent bond b . Two covalent bonds

c..Three covalent bonds Three covalent bonds

3. في الأستيلين أثنتين من ذرات الكاربون مرتبطة مع بعضها البعض من خلال

ا. آصرة تساهمية مفردة . ب . آصرة أيونية
ج . آصرة التساهمية مزدوجة . د . ثلاثة آواصر تساهمية

4 . How can be produced acetylene gas in laboratory, draw shape of equipment's and write reactions?

4. كيف يمكن إنتاج غاز الأستيلين في المختبر أرسم شكل الجهاز واتكتب المعادلات ؟

Ans : Page " 95 "

5. ماهي الخواص العامة للمركب العضوي؟

Ans : Page " 90 "

6 . Write balance equation of followings;

6 . أكتب معادلات كيميائية موزونة :

1. Heating of sodium acetate and sodium hydroxide	$\text{CH}_3\text{COONa} + \text{NaOH} \xrightarrow{\Delta} \text{CH}_4 + \text{Na}_2\text{CO}_3$
2 . Burning of Methane ethylene acetylene gases	$\text{CH}_4 + 2\text{O}_2 \xrightarrow{\Delta} \text{CO}_2 + 2\text{H}_2\text{O}$ $\text{C}_2\text{H}_4 + 3\text{O}_2 \xrightarrow{\Delta} 2\text{CO}_2 + 2\text{H}_2\text{O}$ $2\text{C}_2\text{H}_2 + 5\text{O}_2 \xrightarrow{\Delta} 4\text{CO}_2 + 2\text{H}_2\text{O}$
3. Reaction of water with calcium carbide.	$\text{CaC}_2 + 2\text{H}_2\text{O} \xrightarrow{\Delta} \text{C}_2\text{H}_2 + \text{Ca}(\text{OH})_2$

7 . Explain the effect of normal alcohol on the human's body after the drinking it?

7 . أشر تأثير الكحول الطبيعي على جسم الانسان بعد شربه ؟

Ans : Page " 98 "

12 . ما المقصود بالكحول المعطل؟

Ans : It is ethyl alcohol with some poisonous substance like methyl alcohol are added to make its undrinkable and some dyeing substance are added to it to make its color different from pure ethyl alcohol.

9 . ① Compare methane gas and ethylene and acetylene.

Property	Methane	Ethylene	Acetylene
① Color and odor	Colorless	colorless	colorless gas with a bad smell
② Solubility in water	Highly insoluble in water	insoluble in water	insoluble in water
③ Burning in air	Flammable, smokeless flame, releasing carbon dioxide CO_2 and H_2O and energy	burns with a smoky flame producing CO_2 and H_2O and energy	Combustion forms a smoky flame producing CO_2 and H_2O and energy
④ Reaction with red bromine solution	not react with the red bromine solution .	reacts with the red bromine solution and remove its color.	reacts with the red bromine solution and remove its color

2 . What is used with acetylene gas to produce strong flame ?

Ans : Oxygen

10 . ما أهمية البنزين ؟

Ans : Page " 100 "

11 . What is the methane gas reflected in each of the following observations :

a. The gas is collected when it is prepared by pushing the water down .

Ans : Because it is highly insoluble in water .

B . Gas does not react with bromine .

Ans : Because , it is saturated compound and with single bonds .

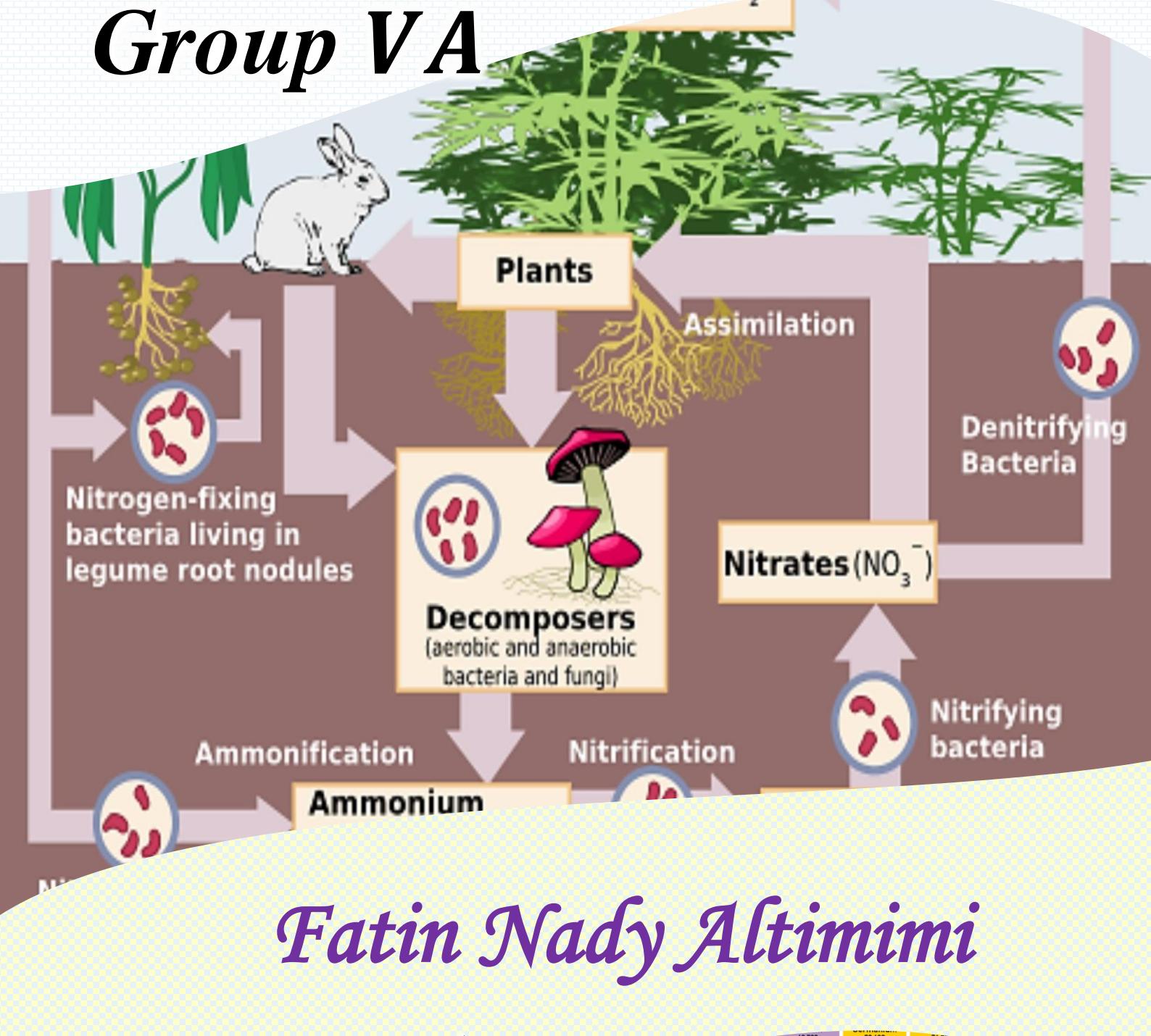
c. The gas burns with a smokeless flame .

Ans : Because it is saturated compound .

12. Both acetylene and gasoline are ignited within smoke flame , what do you deduce from this observation .

Ans : That means they contain high ratio of carbon .

Never give up , great things take time .



Calcium 40.078 2-8-8-2	Scandium 44.95908 2-8-9-2	Titanium 47.867 2-8-10-2	Vanadium 50.945 2-8-11-2	Chromium 51.961 2-8-10-1	Manganese 54.938044 2-8-8-2	Iron 55.845 2-8-14-2	Cobalt 58.933 2-8-8-2	Nickel 58.493 2-8-8-2	Copper 63.546 2-8-18-1	Zinc 65.38 2-8-18-2	Gallium 69.72 2-8-18-2
38 Sr Strontium 87.62 2-8-18-2	39 Y Yttrium 88.90546 2-8-18-9-2	40 Zr Zirconium 91.224 2-8-18-10-2	41 Nb Niobium 92.90437 2-8-18-12-1	42 Mo Molybdenum 95.95 2-8-18-13-1	43 Tc Technetium (98) 2-8-18-13-2	44 Ru Ruthenium 101.07 2-8-18-15-1	45 Rh Rhodium 102.91 2-8-18-16-1	46 Pd Palladium 104.42 2-8-18-18	47 Au Gold 196.967 2-8-18-18-3		
56 Ba Barium 137.327 2-8-18-8-2		57-71 Lanthanides	72 Hf Hafnium 178.49 2-8-18-32-10-2	73 Ta Tantalum 180.94778 2-8-18-32-11-2	74 W Tungsten 183.84 2-8-18-32-12-2	75 Re Rhenium 186.21 2-8-18-32-13-2	76 Os Osmium 190.9 2-8-18-32-14-2	77 Ir Iridium 192.2 2-8-18-32-15-2			
86 Rf Rutherfordium 264.03		104 Rf Rutherfordium 264.03	105 Db Dubnium 266.03	106 Sg Seaborgium 269.03	107 Bh Bh Bohrium 269.03						

Third Grade

Chapter Seven

Group VA

لبنان العدد السادس

Ununtrium [Ununtrium-223] 83.8-84.1	Radium [Radium-226] 85.8-86.2	89-103 Actinides			Rf [Rutherfordium-267] 8.9-10.2	Db [Dubnium-268] 8.9-10.2	Sg [Seaborgium-269] 8.9-10.2	Bh [Berkelium-269] 8.9-10.2	Hs [Hassium-269] 8.9-10.2	Mt [Meitnerium-268] 8.9-10.2	Ds [Darmstadtium-280] 8.9-10.2	Rg [Roentgenium-280] 8.9-10.2	Cn [Copernicium-280] 8.9-10.2	Nh [Nhastium-280] 8.9-10.2	Fl [Florium-280] 8.9-10.2	Mc [Moscovium-280] 8.9-10.2	Lv [Livermorium-263] 8.9-10.2	Ts [Tennesseeium-263] 8.9-10.2	Og [Oganesson-294] 8.9-10.2			
Ununpentium [Ununpentium-287] 8.9-10.2	Ununhexium [Ununhexium-288] 8.9-10.2	Ununheptium [Ununheptium-289] 8.9-10.2	Ununoctium [Ununoctium-290] 8.9-10.2	Ununnonium [Ununnonium-291] 8.9-10.2	Ununoctium [Ununoctium-292] 8.9-10.2	Rhodium 102.91 2.8-18-16-1	Palladium 104.42 2.8-18-18	Ag Silver 107.87 2.8-18-18-1	Cd Cadmium 112.41 2.8-18-18-2	In Indium 114.82 2.8-18-18-3	Tin Tin 118.71 2.8-18-18-4	Sn Antimony 121.76 2.8-18-18-5	Sb Tellurium 127.60 2.8-18-18-6	Te Iodine 126.90 2.8-18-18-7	I Iodine 131.2 2.8-18-18-8	Rn Radium 136.3 2.8-18-18-9						
Ununhexium [Ununhexium-288] 8.9-10.2	Ununheptium [Ununheptium-289] 8.9-10.2	Ununoctium [Ununoctium-290] 8.9-10.2	Ununnonium [Ununnonium-291] 8.9-10.2	Ununoctium [Ununoctium-292] 8.9-10.2	Ununpentium [Ununpentium-287] 8.9-10.2	Ununhexium [Ununhexium-288] 8.9-10.2	Ununheptium [Ununheptium-289] 8.9-10.2	Ununoctium [Ununoctium-290] 8.9-10.2	Ununnonium [Ununnonium-291] 8.9-10.2	Ununoctium [Ununoctium-292] 8.9-10.2	Ununpentium [Ununpentium-287] 8.9-10.2	Ununhexium [Ununhexium-288] 8.9-10.2	Ununheptium [Ununheptium-289] 8.9-10.2	Ununoctium [Ununoctium-290] 8.9-10.2	Ununnonium [Ununnonium-291] 8.9-10.2	Ununoctium [Ununoctium-292] 8.9-10.2	Ununpentium [Ununpentium-287] 8.9-10.2	Ununhexium [Ununhexium-288] 8.9-10.2	Ununheptium [Ununheptium-289] 8.9-10.2	Ununoctium [Ununoctium-290] 8.9-10.2	Ununnonium [Ununnonium-291] 8.9-10.2	Ununoctium [Ununoctium-292] 8.9-10.2

Elements Of Group VA

Q : What are the elements of the fifth group? What do these elements have in common?

Group VA (group five) consists of :

nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb) and bismuth (Bi).

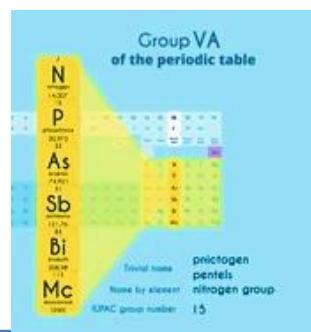
All the elements in this group have five electrons in their outer shells.

مجموعة VA (المجموعة الخامسة) تتكون من النيتروجين (N) ، الفسفور (P) ، الزرنيخ (As) ، الأنتيمون (Sb) والبزموت (Bi).
جميع العناصر في هذه الزمرة لديها خمسة إلكترونات في غلافها الخارجي .

General characteristics of group VA:

The five elements of group form less than 0.2% of the Earth's crust they are very important in nature . The elements of this group have some similar chemical behaviors but they differ in some others .The similarity between these elements reflects the similar aspects in the electron configuration.

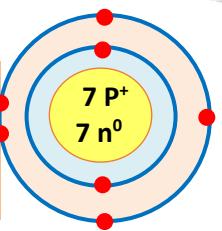
تشكل العناصر الخمسة للزمرة أقل من 0.2% من قشرة الأرض ،تشابه عناصر هذه الزمرة في بعض السلوك الكيميائي العام ، لكنها تختلف في البعض الآخر. وأوجه التشابه هذه تعكس السمات المشتركة للترتيب الإلكتروني لعناصرها.


Q: What are the General characteristics of group VA ?

- ① **The properties of the elements vary gradually from being nonmetals (nitrogen and phosphorus) to metals (bismuth).Arsenic and antimony are metalloid.**
- ② **Nitrogen is gaseous. The rest of the elements are solids in normal conditions.**
- ③ **The chemical properties vary on a regular basis from phosphorus to bismuth.**
 - a. **Phosphorus and nitrogen have the propensity to form covalent compounds.**
 - b. **Other elements like bismuth and arsenic form ionized compounds.**
- ④ **The acidic and basic properties of the elements' oxides also vary from being acidic (phosphorus) to basic (bismuth).**

Question: Explain gradation of metallic properties of group five elements?

Ans : The properties of the elements vary gradually from being nonmetals (nitrogen and phosphorus) to metals (bismuth).Arsenic and antimony are metalloid.


1. تختلف خصائص العناصر تدريجياً من كونها لا فلزية (نيتروجين وفوسفور) إلى فلزية (البزموت). الأرسنيك والانتيمون أشباه فلزات
2. النيتروجين هو غازي. بقية العناصر مواد صلبة في الظروف الاعتيادية .
3. الخصائص الكيميائية تختلف على أساس منظم من الفوسفور إلى البزموت.
- أ : الفوسفور والنيتروجين لديهم ميل لتشكيل مركبات تساهمية. ب : عناصر أخرى مثل البزموت والزرنيخ تشكل المركبات الايونية.
4. تختلف الخصائص الحامضية والقاعدية لاكاسيد العناصر أيضاً عن كونها حامضية (فسفور) إلى قاعدية (البزموت).

Never back down Great success takes time

NitrogenChemical symbol : **N**Atomic number : **7**Mass number : **14**

Shell symbol	(Shell number)	Electrons Number
K	1	2
L	2	5

Occurrence of nitrogen in nature

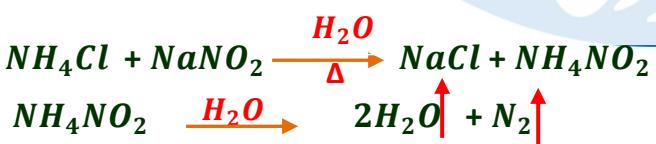
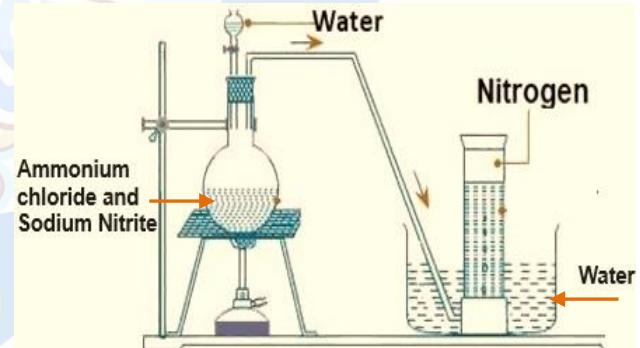
Nitrogen constitutes **78%** of the Earth's atmosphere. فراغات

It is mostly an inert gas in standard conditions.

In ancient times, it was called "**Azote**", which means in Latin "**the Lifeless**".

Q : What is meant by (Azote) ? Ans : Which means in Latin "**the Lifeless**".

Q : What is the importance of nitrogen compounds?



Ans : Nitrogen compounds are very important in food, fertilizers and explosive industries.

وجود النيتروجين في الطبيعة :

يمثل النيتروجين 78 % من الغلاف الجوي للأرض. هو في الغالب غاز خامل في الظروف القياسية. في العصور القديمة ، كان يطلق عليه "Azote" ، وهو ما يعني باللاتينية "عديم الحياة". ومع ذلك ، تعتبر مركبات النيتروجين مهمة جدًا في الأغذية والاسمدة والصناعات القابلة للانفجار.

Q: How to Prepare Nitrogen in the Laboratory ?

Ans : A mixture of ammonium chloride (**NH_4Cl**) and Sodium Nitrite (**$NaNO_3$**) is put to a heating source with some water to prevent any possibility of explosion occurrence, as in the figure below. The reaction can be expressed.

تحضير النيتروجين / التحضير في المختبر:

وذلك بتسخين مزيج من ملح كلوريد الامونيوم وملح نتریت الصودیوم بوجود كمية قليلة من الماء لمنع حدوث انفجار.

Explain: Heating a mixture of ammonium chloride salt and sodium nitrite salt ($NaNO_2$) in the presence of a small amount of water?

Ans : To prevent any possibility of explosion occurrence.

Q: How to Preparation Nitrogen Industrial

Ans: Large quantities of gaseous nitrogen can be industrially produced by the fractional distillation of liquid air which must have no carbon dioxide (CO_2) In this process, nitrogen distills first leaving oxygen behind because the boiling point of nitrogen (-198°C) is lower than the boiling point of oxygen (-183°C).
ممكن تعليل.

The produced nitrogen contains very small quantities of oxygen which can be removed by passing the gas through heated copper fillings which react with oxygen to form (CuO).
ممكن تعليل

يحضر غاز النتروجين صناعياً بعملية التقطير التجزيئي للهواء المسال الخالي من ثاني أوكسيد الكاربون، حيث يتقطر النتروجين أولاً تاركاً الاوكسجين، وذلك لكون درجة غليانه (-198°C) أوطأ من درجة غليان الاوكسجين (-183°C).

يحتوي غاز النتروجين الذي يتم الحصول عليه بهذه الطريقة على كميات ضئيلة من الاوكسجين والتي يمكن التخلص منها بإمداد الغاز فوق برادة النحاس الساخنة والتي تتفاعل مع الاوكسجين لتكون CuO .

Q : Why, when preparing nitrogen industrial, nitrogen distills first leaving oxygen behind?

Ans : Because the boiling point of nitrogen (-198°C) is lower than the boiling point of oxygen (-183°C).

Q : Why, industrial prepared nitrogen gas is passed over copper filings?

Ans : To remove the oxygen.

Q : What are the Physical Properties of Nitrogen?

- ① Nitrogen is colorless, odorless and tasteless.
- ② It has the form of diatomic molecule (N_2) at room temperature.
- ③ It is less soluble in water .
- ④ It's almost inactive in normal conditions.

1 - غاز عديم اللون والرائحة والطعم .

2 - على هيئة جزيء ثانوي الذرة (N_2) عند درجة حرارة الغرفة .

3 - قليل الذوبان في الماء .

4 - غير فعال تقريباً في الظروف الاعتيادية.

Chemical Properties of Nitrogen

- 1 Heating nitrogen leads to direct interaction between nitrogen and magnesium, lithium and calcium.
- 2 When mixed with oxygen and the mixture is put under a spark, nitrogen produces nitrogen oxides (NO_2 and NO).
- 3 Heating nitrogen with gaseous hydrogen under high pressure and with an appropriate catalyst produces ammonia (Haber – Bosch process). According to the following equation:

الخواص الكيميائية للناتروجين :

- 1 - عند تسخين الناتروجين يتحد مباشرة مع المغنيسيوم و الليثيوم و الكالسيوم .
- 2 - عند مزجه مع غاز الاوكسجين وتعرضه للمزيج إلى شرارة كهربائية فإنه ينتج اكاسيد الناتروجين (NO_2 و NO) .
- 3 - عند تسخينه مع غاز الهيدروجين تحت ضغط مرتفع وبوجود عامل مساعد مناسب فإنه ينتج الامونيا (طريقة هابر)

Catalyst : A substance that changes the speed or yield of a chemical reaction without being consumed or chemically changed by the chemical reaction.

العامل المساعد : مادة تقوم بتغيير سرعة أو إنتاج تفاعل كيميائي دون استهلاكه أو تغييره كيميائياً بواسطة التفاعل الكيميائي.

Q : what are the Uses of Nitrogen ?

- 1 It is used to produce ammonia industrially. It is the most important use of nitrogen due to the vital importance of this substance in the production of fertilizers and in the production of nitric acid (Ostwald process).
- 2 It is used in cooling and freezing food products by putting the products into the liquid nitrogen gas.
- 3 The liquid nitrogen is used in the petroleum industries. It is used to cause an increase in the pressure in the petrol producing wells to push the petrol up the wells.
- 4 It is used as an inert agent in containers and tanks of flammable materials.

سؤال : ماهي استعمالات غاز الناتروجين ؟

- 1 - يستعمل لإنتاج الامونيا صناعياً (طريقة هابر)، ويعتبر ذلك من أهم الاستعمالات لما لهذه المادة من أهمية في مجال إنتاج الأسمدة وفي إنتاج حامض النترريك (طريقة اوستولد).
- 2 - يستعمل في عمليات تبريد المنتجات الغذائية وذلك بعملية التجميد بالغمر في الغاز المسال.
- 3 - يستعمل الناتروجين المسال في الصناعات النفطية وذلك لإحداث زيادة في ضغط الآبار المنتجة للنفط لجعل النفط يتدفق منها.
- 4 - يستعمل كعامل خامل في خزانات المواد القابلة للانفجار.

Why: Ammonia production is considered one of the most important uses?

Ans : Due to the vital importance of this substance in the production of fertilizers and in the production of nitric acid.

Q : Nitrogen gas used as an inert in containers and tanks of flammable materials?

Ans : Because it is agent gas .

Nitrogen Compounds

Nitrogen atom has **five** electrons in its outer shell.

It has the propensity to form **covalent bonds** which can be **single bonds** as in the molecule of ammonia (NH_3) or **triple bond** as in the molecule of nitrogen (N_2).

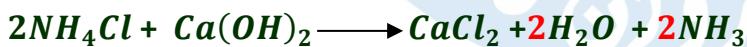
Nitrogen atom can also **gain** three electron or one electrons according to its combination with the atoms of other elements in their compounds.

تحتوي ذرة النيتروجين على خمسة إلكترونات في غلافها الخارجي مكناها المشاركة في تكوين أواصر تساهمية يمكن أن تكون :
أواصر مفردة كما في جزيئ الأمونيا (NH_3) أو رابطة ثلاثية كما هو الحال في جزيء النتروجين (N_2).

كما يمكن لذرة النيتروجين أن تكتسب ثلاثة إلكترونات أو إلكترون واحد وفقاً لاتحادها مع ذرات العناصر الأخرى في مركباتها.

The most important compounds of nitrogen :

A - NH_3 (Ammonia):


It is one of the important compounds of nitrogen and hydrogen.

- 1 It occurs in nature as a result of the process of decay of animals and plants upon death.
- 2 Ammonia occurs also in soil in the form of ammonium salts.

أ - **الأمونيا** : أحد المركبات المهمة للنتروجين والهيدروجين. ينتج في الطبيعة من تحلل أجسام الحيوانات و النباتات بعد موتها
كما و توجد الأمونيا في التربة على هيئة املاح الامونيوم.

Q: How to Prepare Ammonia in the Laboratory?

Gaseous ammonia can be produced in the laboratory by heating the salt of ammonium chloride with calcium hydroxide ,as in the following equation:

The gas ammonia is **lighter** than air. It is, then , collected by downward removal of air after passing it onto a pole of **calcium oxide** to remove any moisture with the gas.

تحضير الامونيا مختبرياً

يحضر غاز الامونيا مختبرياً بتسخين ملح كلوريد الامونيوم بلطف مع هيدروكسيد الكالسيوم.
وبيما أن غاز الامونيا أخف من الهواء فإنه يجمع بالإزاحة السفلية للهواء بعد أن يمرر على عمود يحوي اوكسيد الكالسيوم
للتخلص من الرطوبة المصاحبة للغاز .

Explain: Ammonia gas is collected by downward removal?

Ans: Because the gas ammonia is lighter than air .

Explain: Ammonia gas is passed over a column of calcium oxide?

Ans : To remove any moisture with the gas.

Q: How to Industrial Preparation of Ammonia?

Large quantities of ammonia can be produced industrially by (**Haber Process**) which involves the direct combination of nitrogen and hydrogen as in the equation :

تحضير الامونيا صناعياً : يتم إنتاج الامونيا صناعيا وبكميات كبيرة بطريقة هابر والتي تتضمن الاتحاد المباشر للنيتروجين مع الهيدروجين.

Haber Process: An industrial process used for producing ammonia from nitrogen and hydrogen by combining them under high pressure in the present of an iron catalyst.

عملية هابر: عملية صناعية تستخدم لانتاج الامونيا من النيتروجين والهيدروجين عن طريق الجمع بينها تحت ضغط عال في بوجود الحديد كعامل مساعد.

Q : What are the physical properties of ammonia?

- 1 .Ammonia is a colorless gas with a characteristic pungent smell. It is **lighter than air**
- 2 . It has strong propensity to be soluble in water. Its aqueous solution is called " Ammonia Water" (NH_4OH).

If this aqueous solution is **heated or exposed** to air, the solution **loses** ammonia gas. The high solubility of ammonia in water can be clearly shown by the **fountain experiment**.

- 3 . It can be liquidized at room temperature with (8 - 10) atom pressure.
- 4 . The boiling point of liquid Ammonia is (- 33.5°C) under the normal atmospheric pressure
- 5 . It vapors at high temperature and for this reason it is used in refrigeration and ice production.

الخواص الفيزيائية للأمونيا

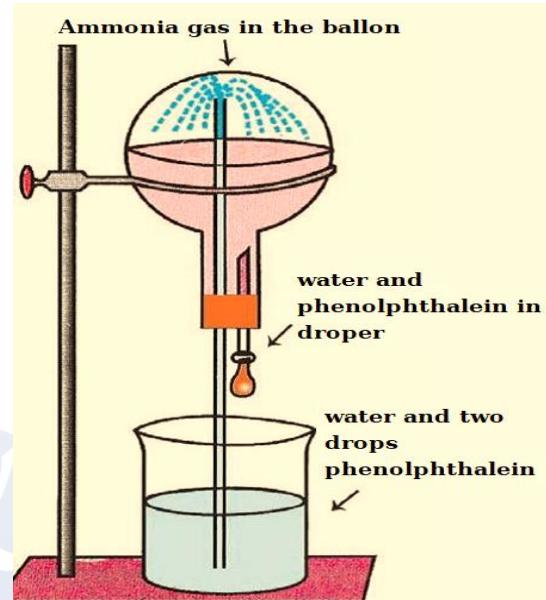
- 1 . الامونيا غاز عديم اللون ذو رائحة نفاذة ولاذعة ، وهو اخف من الهواء.
- 2 . كثير الذوبان في الماء، ويعرف محلوله المائي بماء الامونيا ، وعند تسخين محلوله المائي او تركه معرضًا للجو فانه يفقد غاز الامونيا ويمكن البرهنة على قابلية ذوبانه العالية في الماء بتجربة التافورة .
- 3 يمكن إسالته بسهولة عند درجة حرارة الغرفة بتسلیط ضغط مقداره (8 - 10 atm)
- 4 . لسائل الامونيا درجة غليان مقدارها (-33.5°C) تحت **الضغط الجوي الاعتيادي** .
- 5 . له حرارة تبخر عالية لذلك يستعمل في مصانع إنتاج الثلج لغرض التبريد.

Q : Why, liquid ammonia used in refrigeration and ice production?

Ans : It vapors at high temperature .

“Success is no accident. It is hard work, perseverance, learning, studying, sacrifice and most of all, love of what you are doing or learning to do.”

Fountain experiment


The device used in this experiment consists of a glass. Half of the glass is filled with water with two drops of **phenolphthalein**. It also consists of a round bottom flask provided with a rubber cover with **two holes**.

A long glass tube goes through one of these two holes down to the bottom of the flask.

A dropper tube goes through the other hole of the cover. The flask is filled with **dry ammonia gas** and then turned upside down on the water glass. The dropper tube is used to add some water drops with the **colorless phenolphthalein**.

The gas reaches water and starts to dissolve.

This process changes the pressure inside the flask and the water pushes from the glass to the flask as a fountain. The solution becomes **pink-red** because (ammonia solution acts as a base).

س / أشرح مع الرسم تجربة نافورة غاز الأمونيا؟

الجواب : يتكون الجهاز من كأس مملوءة إلى نصفها بالماء، وتحتوي قطرتين من محلول **دليل الفينولفاتلين** ودورق

دائري القطر مجهز بسداد مطاطي ذي ثقبين يخترق أحدهما أنبوب زجاجي طويلاً يمتد حتى قعر الدورق ويخترق الفتحة

الثانية أنبوب قطارة نملاً الدورق بغاز الأمونيا الجاف ونقلبه فوق كأس الماء ثم ندخل بوساطة القطارة بضع قطرات من

الماء المحتوي على دليل الفينولفاتلين العديم اللون وحين يصبح الغاز بمتاتس مع الماء يذوب فيه فيتخلل الضغط داخل

الدورق ليندفع الماء من الكأس إلى الدورق بشكل نافورة ويكتلون محلول **بلون احمر وردي** بسبب قاعدته (محلول الأمونيا

ذو فعل قاعدي).

Chemical properties of ammonia

1 . Ammonia molecule is chemically stable, yet it can **release nitrogen and hydrogen** when you pass gas on a hot metal surface, or when passing an electric spark through the gas.

2 . Ammonia gas is **flammable** in an atmosphere of oxygen, as in the following

3 . Ammonia solution turns the **red litmus paper** into **blue**.

الخواص الكيميائية للأمونيا

1. جزيئ الأمونيا مستقرة كيميائياً ، ومع ذلك يمكنه تحرير النيتروجين والهيدروجين عند إمداد الغاز على سطح فلزي ساخن ، أو عند إمداد شرارة كهربائية خلال الغاز.

2. غاز الأمونيا قابل للاشتعال في جو من الأوكسجين.

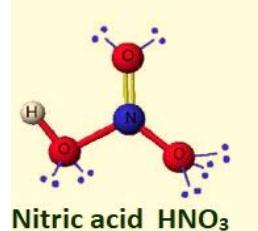
3. إن محلول الأمونيا يتحول لون ورقة زهرة الشمس الحمراء إلى اللون الأزرق.

Red litmus paper turns blue in bases

"Success is not the end of the road, but rather the beginning of a new journey towards greater goals".

Q: How Test of Ammonia ?

Ans : Ammonia can be detected as following : when ammonia react with hydrogen chloride , it produce white dense vapor which is ammonium chloride.

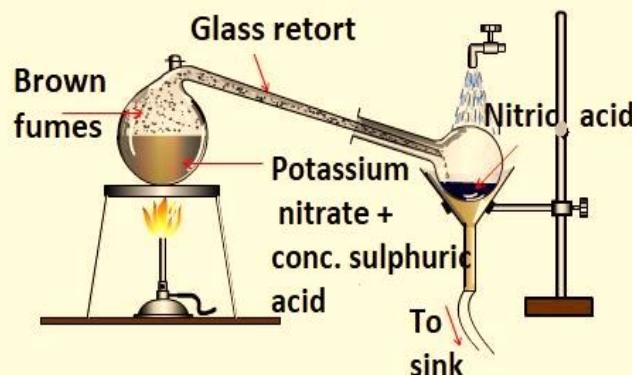


سؤال : كيف يمكن الكشف عن غاز الأمونيا ؟

الجواب / يمكن الكشف عن الأمونيا والتأكد من وجودها عند اتحادها مع غاز كلوريد الهيدروجين حيث ينتج أبخرة بيضاء كثيفة نتيجة لتكون غاز كلوريد الأمونيوم .

Nitric acid

Nitric acid is the most important oxygenated acids of Nitrogen which has a molecular formula HNO_3 .


حامض النتريك : يعتبر حامض النتريك من أهم الحوامض الاوكسجينية للنتروجين وهو ذو صيغة جزيئية HNO_3 .

Preparation of Nitric Acid in Laboratory

Q: How to Preparation of Nitric Acid in Laboratory?

This acid is usually prepared by heating a mixture of Potassium nitrate salt with sulfuric acid in the glass retort, and the nitric acid vapor resulting from the interaction is condensed in a water-cooled vessel .

as the following equation:

تحضير حامض النتريك مختبرياً : يحضر بتسخين مزيج مكون من ملح نترات البوتاسيوم مع حامض الكبريتيك المركز في معوجة زجاجية ، ويكتف بخار حامض النتريك الناتج من التفاعل في وعاء استقبال مبرد بالماء .

Industrial preparation of the acid

Q: How to Preparation of Nitric Acid artificially?

The acid can be prepared artificially in commercial quantities following " Ostwald" whereby ammonia is oxidized in air , platinum acts as an assistant.

تحضير الحامض صناعياً :

يمكن تحضيره صناعياً بكميات تجارية بطريقة اوستولد والتي يتم فيها أكسدة الامونيا بالهواء بوجود البلاتين كعامل مساعد .

Define Ostwald : An industrial method for the preparation of nitric acid in which ammonia is oxidized with air in the presence of platinum as a catalyst.

Q : What are the Properties of Nitric acid ?

- ① Pure acid is colorless , it has odorous fumes
- ② The color of the impure acid (or the pure acid after leaving for a period of time) is yellow due to containing soluble nitrogen oxides (especially NO_2).
- ③ The acid is completely dissolving in water forming a mixture of (68%).
- ④ It boils at $120.5^{\circ}C$.

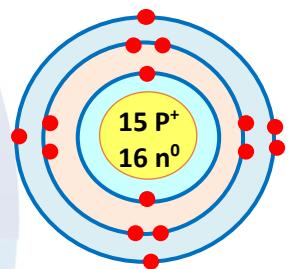
س/ ما هي خصائص حامض النيترات

1. الحامض النقي عديم اللون و لأخرحة الحامض رائحة

2. يكون لون الحامض غير النقي (أو الحامض النقي بعد تركه لفترة من الزمن) أصفر بسبب احتوائه على أكاسيد النيتروجين القابلة للذوبان (خاصة NO_2).

3. الحامض تام الإذابة في الماء ليكون مزيج معه (بنسبة 68%).

4. يغلي عند 120.5 درجة مئوية.


Phosphorus

Chemical Symbol: P

Atomic Number: 15

Mass Number: 31

Shell symbol	Shell number	Electron number
K	1	2
L	2	8
M	3	5

Existence of phosphorus

- ① This element is an essential component in living things, it is found in nerve cells, bones and cell cytoplasm.
- ② Naturally , it is not found freely in nature , yet, is extensively found various minerals. Apatite ores (apatite: impure form of calcium phosphate) are important source of this element.
- ③ Huge deposits of this mineral are found in different parts of the world including Iraq.

Q : Define apatite ?

Ans : Apatite impure form of calcium phosphate, are important source of this element.

15 PHOSPHORUS

It is the red Phosphorus in match tips that makes it ignite.

P

apatite

1. يعتبر هذا العنصر من المكونات الأساسية في الكائنات الحية حيث يوجد في الخلايا العصبية والعظام و ساتيوبلازم الخلايا .
2. أما في الطبيعة فلا يمكن أن يتواجد بشكل حر ولكنه يتواجد بشكل واسع في معادن مختلفة حيث تعتبر الخامات الفوسفاتية (الاباتيت) : شكل غير نقي لفوسفات الكالسيوم مصدرًا مهمًا لهذا العنصر .
3. وتوجد ترسيبات كبيرة من هذا المعدن في مناطق مختلفة من العالم ومنها العراق.

Industrial production of phosphorous

Question: What is the main source of phosphorus?

Phosphate ores contain high ratio of phosphorous, therefore, these ores represent the basic source for commercial phosphorous production with high purity, therefore, there is no need to prepare it in laboratory.

تحتوي خامات الفسفور على نسب عالية من عنصر الفسفور ولذلك فهي تمثل المصدر الأساسي لإنتاجه بكميات تجارية وبنقاوة عالية لذلك لا توجد حاجة لتحضيره مختبرياً.

Q : There is no need to prepare phosphorus in laboratory. Explain that?

Ans : For the possibility of production in commercial quantities and high purity.

سؤال: لا توجد حاجة لتحضير الفسفور مختبرياً؟

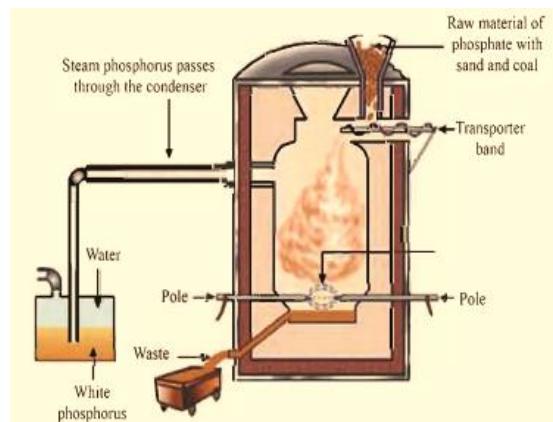
الجواب : لأمكانية إنتاجه بكميات تجارية وبنقاوة عالية.

Q : Explain the preparation of phosphorus industrial?

Ans : Phosphorous is normally produced by heating Calcium Phosphate $Ca_3(PO_4)_2$ with the sand (SiO_2) and carbon C in an electrical oven at high temperature, air-tight, as in the following equation: $2Ca_3(PO_4)_2 + 6SiO_2 + 10C \xrightarrow{1500^{\circ}C} 6CaSiO_3 + 10CO + P_4$

تتضمن الطريقة المعتادة لإنتاج الفسفور تسخين خام فوسفات الكالسيوم الممزوج مع الرمل SiO_2 والكاربون C في فرن كهربائي لدرجات حرارية عالية وبمعزل عن الهواء.

The resulting phosphorous is white, sometimes called yellow phosphorous it is cast in the form of cylinder bars. The casting process and preservation is done underwater because of the low temperature of flammability, fast integration with oxygen, high flammability in air.


إن الفسفور الناتج بهذه الطريقة من النوع الأبيض (و يدعى أحياناً الفسفور الأصفر) حيث يصب بعد إنتاجه في قوالب على هيئة قضبان اسطوانية و يتم عملية صب القوالب و حفظ الفسفور جميعها تحت الماء "عل" بسبب درجة حرارة اندلاعه الواطنة وسرعة اتحاده مع الاوكسجين، وسرعة اشتعاله في الهواء.

Q : The casting process and preservation of phosphorous is done underwater?

Ans : Because of the low temperature of flammability, fast integration with oxygen, high flammability in air.

عل : تتم عملية صب القوالب وحفظ الفسفور جميعها تحت الماء؟

الجواب : بسبب درجة حرارة اندلاعه الواطنة وسرعة اتحاده مع الاوكسجين، وسرعة اشتعاله في الهواء.

Properties of phosphorous

- ① Phosphorous is normally white (yellowish) having a waxy form.
- ② Pure phosphorous, it is solid colorless and transparent.
- ③ There are other types of it, red or black (or purple), the most common is white and red phosphorous.

١. الفسفور الاعتيادي مادة صلبة بيضاء اللون (أو مصفرة) شمعية القوام

٢. الفسفور النقي فهو مادة صلبة عديمة اللون وشفافة .

٣. هناك أنواع أخرى منه حمراء اللون أو سوداء (أو بنفسجية) والشائعة منها الفسفور الأبيض والفسفور الأحمر .

Q: White Phosphorous is more active than red phosphorous under normal temperatures?

Ans : Because atoms of these two forms of phosphorous differ in the way that they bind.

عل: الفسفور الأبيض أكثر فعالية من الفسفور الأحمر في الدرجات الحرارية الاعتيادية ؟

الجواب : وذلك لاختلاف كيفية ترابط الذرات المكونة لكل صورة من هاتين الصورتين من صور هذا العنصر.

Question: Enumerate the properties of white phosphorus.

- ① White phosphorous glows in the dark, looking pale green when exposed to damp air this process is called chemical luminance or "glitter", accompanied by garlic - like odor.
- ② It burns spontaneously "automatically" in air at room temperature due to enough oxidation releasing phosphorous pent oxide (P_2O_5), see the following equation :

- ③ Under other conditions, (limited amount of oxygen) white phosphorous oxidizes to form Phosphorous trioxide P_2O_3 , as in the following equation: $P_4 + 3O_2 \longrightarrow 2P_2O_3$
- ④ White phosphorous is a poisoners for cells of living things whereby it penetrates into the digestive system and dissolves in the digestive ulcers, turning into a poison , unlike red phosphorous which doesn't dissolve in the ulcers.

خواص الفسفور الأبيض:

١. يتوهج الفسفور الأبيض في الظلام ليبدو بلون أخضر باهت عند تعرضه لهواء رطب و تدعى هذه العملية بالتألق الكيميائي أو "التألق" و يصاحب هذه العملية انبعاث رائحة تشبه رائحة الثوم.
٢. يشتعل بشكل تلقائي في الهواء و عند درجة حرارة الغرفة الاعتيادية نتيجة لتأكسده بكمية كافية من الاوكسجين مكون خماسي اوكسيد الفسفور (P_2O_5) .
٣. وتحت ظروف أخرى (بكميات محددة من الاوكسجين) يتآكسد الفسفور الأبيض ليكون ثلاثي اوكسيد الفسفور (P_2O_3)
٤. يعتبر الفسفور الأبيض مادة سامة بالنسبة لخلايا الكائنات الحية و يؤدي دخول الفسفور إلى داخل الجهاز الهضمي وذوبانه في العصارات الهضمية إلى حالة تسمى خلاف الفسفور الأحمر الذي لا يذوب في هذه العصارات.

Q : white phosphorous burns impulsively "automatically" in air at room temperature?

Ans : Due to enough oxidation .

Q : Why , white Phosphorus is poisoner, while red phosphorus is non poisoner?

Answer: Because White Phosphorus dissolves in digestive ulcers .

While red phosphorus doesn't dissolve in the ulcers.

س: الفسفور الأبيض سام ، في حين أن الفسفور الأحمر غير سام؟

الجواب: لأن الفسفور الأبيض يذوب في القرحات الهضمية ، بينما الفسفور الأحمر لا يذوب في القرحة.

Chemical luminance : The process of white phosphorus flare in the dark when exposed to humid air appears pale green and accompanied by the process of emitting an odor resembling garlic.

التلألق الكيميائي: هي عملية توهج الفسفور الأبيض في الظلام عند تعرضه لهواء رطب فيبدو بلون أخضر باهت ويصاحب هذه العملية أنباع رائحة تشبه الثوم .

Q : Compare white phosphorus and red phosphorus?

	White phosphorous	Red phosphorous
①	Translucent, white to yellowish color	① Its external surface is red to violet color
②	Produced in the rod form and stored under water because of its activity.	② Produced in powder form it is not effected by air at ordinary condition.
③	Lower density than the red	③ Higher density than the white
④	Soluble in some organic solvents such as carbon disulfide but insoluble in water	④ Insoluble in organic solvents and water
⑤	Its melting point is low	⑤ Sublimates by heating.
⑥	Its flash point is low so it burns easily	⑥ Its flash point is high
⑦	It is poisonous.	⑦ It is not poisonous

Some phosphorous compounds

Phosphoric Acid (H_3PO_4)

A densely formed, colorless and odorless liquid. This acid is weak non oxidative acid.

It reacts with bases forming phosphorous salts, such as sodium phosphate Na_3PO_4 which is used as preservative for some food products , meat and many other uses . which have major importance in manufacturing phosphate fertilizers.

حامض الفسفوريك

هو سائل كثيف القوام عديم اللون رائق وليس له رائحة. يعتبر هذا الحامض من الحوامض الضعيفة غير المؤكسدة ويتفاعل مع القواعد مكوناً أملاح الفوسفات مثل فوسفات الصوديوم الذي يستخدم كمادة حافظة لبعض المنتجات الغذائية واللحوم والعديد من الاستخدامات الأخرى. و لها أهمية كبيرة في صناعة الأسمدة الفوسفاتية.

Q : Where is the sodium phosphate uses ?

Ans : It's used as preservative for some food products , meat and many other uses .

which have major importance in manufacturing phosphate fertilizers.

Industrial Uses of some Phosphorous compounds

1. Matchsticks

Matchsticks are processed by Ammonium Phosphate solution $(\text{NH}_4)_3\text{PO}_4$

الأستعمالات الصناعية لبعض مركبات الفسفور : أعود الثقب

Q : Why matchsticks are processed by Ammonium Phosphate solution $(\text{NH}_4)_3\text{PO}_4$?

Ans : ① This material helps burn the matchstick in a smokeless flame.

② It also helps keep the flame burning completely.

③ It also ensures the stick put off when the flame goes off, therefore, no hazard of fires when the matchstick is thrown away.

سؤال : لماذا يعامل عود الثقب بمحلول لفوسفات الامونيوم ($\text{NH}_4)_3\text{PO}_4$) ؟

الجواب / 1. تساعد هذه المادة على احتراق العود بلهب بدون دخان.

2. استمرار اتقاد العود حتى النهاية.

3. إضافة لذلك فبأنها تمنع اتقاد العود بعد انطفاء الشعلة مما يقلل الخطر الناجم عن رمي العود مباشرة بعد انطفاء الشعلة .

Q : What are the components of the top of a paste matchstick ?

a . Flammable material like antimony sulfide Sb_2S_3 .

b . An oxidant, like Potassium Chlorate KClO_3 .

c . Friction material like glass powder.

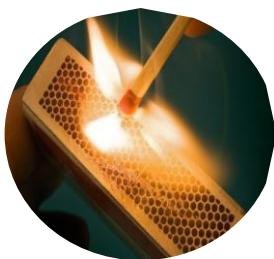
d . Glue material to bind the ingredients of the paste .

سؤال : ماهي مكونات عجينة رأس عود الثقب ؟

أ - مادة قابلة للاشتعال مثل كبريتيد الانتيمون Sb_2S_3

ب - مادة مؤكسدة مثل كلورات البوتاسيوم KClO_3

ج - مادة تزيد من الاحتكاك مثل مسحوق الزجاج.


د - مادة صمغية تربط مكونات العجينة.

Q : Explain how to ignite matchstick ?

Ans : When the top of the matchstick is rubbed against the dis of the box which contains red phosphorous, a sufficient heat is generated to ignite the side of the box then this ignition transfer to the top of the matchstick and it burns.

سؤال : أشرح كيفية أشتعال عود الثقب ؟

ج : عند حك رأس العود بجانب العلبة التي تحتوي على الفسفور حراة تكفي لبدء الاشتعال على جانب العلبة الأحمر، تتولد ثم تنتقل الشعلة إلى رأس العود ويستمر الاشتعال.

2. Phosphate fertilizers

Q : Why Phosphorous is an essential element in the growth of plants?

Ans : Because it plays a vital role in the life of living beings and the development of the skeletal structure of animals and humans.

Therefore, it is important for plants to make use of this element in the soil in the form of soluble compounds .

علل : الفوسفور عنصر أساسى في نمو النباتات ؟

الجواب : لأنه يلعب دورا حيويا في حياة الكائنات الحية وتطور الهيكل العظمي للحيوانات والبشر .
لذلك كان من الضروري أن يكون أحد العناصر التي يستمدها النبات من التربة بشكل مركبات قابلة للذوبان .

Why : The plant not benefit from calcium phosphate , although it exists in nature ?

Ans : Because it is a salt that is very poorly soluble in water.

علل : لا يستفاد النبات من فوسفات الكالسيوم رغم وجودها في الطبيعة ؟

الجواب : لأنها ملح قليل الذوبان جدا في الماء .

Calcium phosphate : The original source of phosphate in nature, which is a salt that is fairly insoluble in water.

فوسفات الكالسيوم : وهو المصدر الأصلي للفوسفات في الطبيعة ، وهو ملح غير قابل للذوبان إلى حد كبير في الماء .

Explain: Calcium phosphate must be converted into a salt dissolved in water?

Ans : To be used as a fertilizer.

علل : تحويل فوسفات الكالسيوم إلى ملح ذائب ؟

الجواب : لاستخدامه كسماد .

Q: Where is calcium phosphate found ?

Ans : Naturally found in rocks .

سؤال : أين يوجد فوسفات الكالسيوم ؟

الجواب : موجود طبيعياً في الصخور .

Q: How is calcium phosphate converted from a poorly soluble salt to an easily soluble salt?

Ans : By calcium phosphate is processed with sulfuric acid .

Super-phosphate fertilizer

Q : How do we get super-phosphate fertilizer ?

Ans : When calcium phosphate is processed with sulfuric acid, it changes into super-phosphate fertilizer. It is soluble in water, so that the plant can make use of it .

سؤال : كيف نحصل على سماد السوبر فوسفات ؟

ج : عندما يعامل فوسفات الكالسيوم مع حامض الكبريتيك يتتحول إلى سماد سوبر فوسفات .

وهو مادة قابلة للذوبان بالماء ليتسنى للنبات الاستفادة منها .

Q : Where are super-phosphate fertilizer used?

Ans : This fertilizer is used to increase solid fertility.

س : أين يستخدم سماد السوبر فوسفات؟

الجواب : ويستخدم لزيادة خصوبة التربة.

Q : How can prepare the triple super-phosphate ? What is its chemical formula?

Ans : Triple super-phosphate : It is prepared through the reaction of phosphoric acid with calcium phosphate . The chemical formula $Ca(H_2PO_4)_2$.

سؤال : ما هو سماد السوبر فوسفات الثلاثي؟

الجواب : سماد السوبر فوسفات الثلاثي يتم تحضيره من خلال تفاعل حامض الفوسфорيك مع فوسفات الكالسيوم.

Q: Why triple super-phosphate far much better than ordinary phosphate ?

Ans : Because it doesn't contains calcium sulfate .

عل : يعتبر سماد ثلاثي فوسفات الكالسيوم أفضل من سماد الفوسفات العادي؟

الجواب : لأنه لا يحتوي على كبريتات الكالسيوم.

Note : Iraq is an important source of natural calcium phosphate whereby large amounts are found in Rutba region, in Akashat at Anbar province.

ملاحظة : أن العراق هو مصدر مهم لفوسفات الكالسيوم الطبيعية حيث توجد كميات كبيرة في منطقة الرطبة ، في عكاشات في محافظة الأنبار.

Discover your true strength when facing challenges, as that is where growth and development occur".

Chapter Equation

7

Q1 . Complete the following statements;

1. Atomic number of nitrogen is therefore it is nucleus contains----- proton ,
 which electrons rotate around of nucleus. Ans : " 7 , 7 , 7 "

2. Atomic number of phosphorus is therefore it is nucleus contains
 Proton ----- , which electrons rotate around of nucleus. Ans : " 15 , 15 , 15 "

س 1 . أكمل العبارات التالية ؛
 ١. العدد الذري للنيتروجين هو لذلك فهي تحتوي على النواة بروتون ، والتي تدور الإلكترونات حول النواة.
 ٢. العدد الذري للفوسفور هو لذلك فهي عبارة عن نواة تحتوي على بروتون والذي تدور الإلكترونات حول النواة.

3 . A match's tip is coated with a paste , which consist of the following substance.

a. An inflammable material such as Ans : antimony sulfide SbS3
 b. An oxidizing material such as Ans : Potassium Chlorate KClO3
 c. A material that increases the friction force such as: Ans : glass powder.

٣ . رأس عود الثقاب مغلفة بعجينة ، تتكون من المادة التالية .
 ١. مادة قابلة للاشتعال مثل ب. مادة مؤكسدة مثل ج. مادة تزيد من قوة الاحتكاك مثل :

4. Nitrogen has in nature. Ans : diatomic molecule .Chemical symbol of nitrogen Ans : N

٤ . النيتروجين لديه في الطبيعة. الرمز الكيميائي للنيتروجين

5. NH3 is symbol of molecule. this molecule consist of 1 atom and
 three atoms..... . Ans : Ammonia , Nitrogen , Hydrogen .

..... هو رمز يتكون هذا الجزيء من ذرة واحدة وثلاث ذرات..... .

6 . What is the benefits of fertilizer of phosphate?

٦ . ما هي فوائد سماد الفوسفات ؟

Ans : a . It is an essential element in the growth of plants.

 b . It plays a vital role in the life of living beings .

 c . Development of the skeletal structure of animals and humans.

Q2 . Choice the correct answer;

① Which one of following percentage of nitrogen in earth's atmosphere?

a. 21% b. 78% c. 50%

78%

أنتبه الجواب الصحيح
المضلل باللون الاصفر

① أي واحد من النسبة المئوية التالية من النيتروجين في قشرة الأرض ؟

ج. 50% ب. 78% ج. 21%

② Which of the following compounds is used in preparation of nitrogen gas in laboratory?

- a. Copper sulfate
- b. Calcium Chloride
- c. Ammonium Chloride and sodium nitrate in the present of water

Ans : C

② أي مركب يستخدم أثناء تحضير غاز النيتروجين في المختبر؟

- ج. كلوريد الأمونيوم
- ب. كلوريد الكالسيوم
- أ. كبريتات النحاس

③ Among those substances, where as phosphorus enters their structure a substance directly used as phosphate fertilizer , this substance is

- a. Bones
- b. Natural calcium phosphate
- c. super phosphate .

Ans : C

③ من بين هذه المواد ، يدخل الفوسفور بتركيب مادة تستخدم مباشرة كسماد فوسفاتي ، هذه المادة هي.....

- ج. سوبر فوسفات
- ب. فوسفات الكالسيوم الطبيعي
- أ. العظام

④ Which one of following can be proof that shows presence of ammonia in solution?

- a. It turns red litmus to blue
- b. It turns blue litmus to red
- c. It turns red litmus to yellow

Ans : a

④ أي واحد من التالي يثبت وجود الأمونيا في محلول؟

- ج. يتتحول ورقة زهرة الشمس الحمراء إلى اللون الأصفر
- ب. يتتحول ورقة زهرة الشمس الأزرق إلى اللون الأحمر

⑤ Heat of your hand is sufficient to ignite one form of phosphorus element, thus it should be handle with hand when it is used in experiments for studying the phosphorus properties. This form is a. Red phosphorus

- b. white phosphorus

Ans : b

⑤ إحدى صورتي الفسفور تكفي حرارة يدك لاتقادها ولذلك يلزم عدم مسكتها باليد عند استعمالها لإجراء تجارب تتعلق بخواص الفسفور وهي

- أ. الفسفور الأحمر
- ب. الفسفور الأبيض

⑥ Which method is used to preparation of Nitric acid in industry?

Ans : b

- a. Heating of Potassium nitrate salt and concentrated Sulfuric acid mixtures;

- b. Oxidizing of ammonia by using as catalyst platinum in atmospheric pressure.

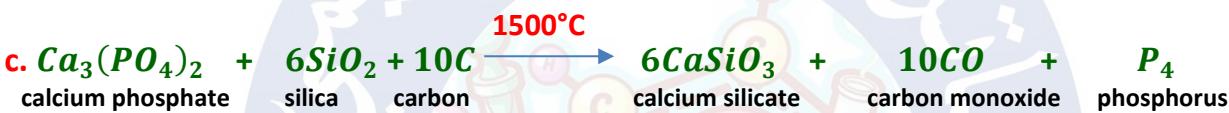
- c. Separation of ammonia molecules as aqueous.

⑥ ما الطريقة المستخدمة في تحضير حامض النيترิก في الصناعة؟

- أ. تسخين ملح نترات البوتاسيوم ومخاليل حامض الكبريتิก المركز ؟

- ب . أكسدة الأمونيا باستخدام البلاatin كعامل مساعد في الضغط الجوي.

- ج. فصل جزيئات الأمونيا كما مائي.


⑦ When phosphorous burns in an enough of air, mostly produces.....

- a. Phosphorous trioxide
- b. phosphorous pent oxide
- c. phosphorous nitrate

Ans : b

⑦ عندما يحترق الفوسفور بكمية كافية من الهواء ، ينتج غالباً.....
 ج. نترات الفوسفور ب. أكسيد الفسفور الخامس

Q3 . complete the following reaction than balanced it and write reactant produces.

Q4. Mark the following sentences as true (T) or false (F) after that correct the false sentences ?

a. Phosphorous element exist compound form in the nature. T

b. Highly temperature is used preparation of ammonia in industry. F

(under high pressure)

c. Nitrogen has five electrons in outermost energy level. It can be compose single or multiple covalent bond. T

d. Compounds which are called "phosphate" are salt of common phosphoric acid H_3PO_4 . T

e. White phosphorus is poisonous material thus it is stored under water. T

f. Red phosphorus is stored in the water container bottles. F

(White phosphorus is stored in the water container bottles).

g. White phosphorus is more reactive than red phosphorus, where as they are two forms for one element. T

h. The color of pure Nitric acid after leaving for a time changes yellow. T

ا. عنصر الفسفور موجود شكل مركب في الطبيعة

ب. يتم استخدام درجة الحرارة عالية في تحضير الأمونيا صناعياً.

ج. يحتوى النيتروجين على خمسة إلكترونات في مستوى الكترونات في مستوى الطاقة الأبعد. يمكن تكوين رابطة تساهيمية مفردة أو متعددة.

د. المركبات ، والتي تسمى "الفسفات" ، هي ملح حامض الفوسفوريك المشترك. H_3PO_4

هـ. الفسفور الأبيض هو مادة سامة وبالتالي يتم تخزينها تحت الماء.

وـ. يتم تخزين الفسفور الأحمر في زجاجات حاويات الماء.

زـ. الفسفور الأبيض أكثر تفاعلاً من الفسفور الأحمر ، علماً انها صورتان لعنصر واحد.

حـ. يتغير لون حمض النيترิก النقي بعد تركه لفترة من الوقت إلى اللون الأصفر.

Calcium 40.078 2-8-8-2	Scandium 44.95908 2-8-8-2	Titanium 47.847 2-8-10-2	Vanadium 50.9415 2-8-8-2	Chromium 51.9961 2-8-10-1	Manganese 54.938044 2-8-8-2	Iron 55.845 2-8-8-2	Cobalt 58.933 2-8-10-2	Nickel 58.493 2-8-8-2	Copper 63.546 2-8-10-1	Zinc 65.38 2-8-8-2	Gallium 69.723 2-8-8-3	Germanium 72.630 2-8-8-2					
Sr 38 Strontium 41.742 2-8-8-8-2	Y 39 Yttrium 88.90584 2-8-10-2	Zr 40 Zirconium 91.224 2-8-10-10-2	Nb 41 Niobium 92.90437 2-8-10-12-1	Mo 42 Molybdenum 95.95 2-8-10-13-1	Tc 43 Technetium (98) 2-8-10-13-2	Ru 44 Ruthenium 101.07 2-8-10-15-1	Rh 45 Rhodium 102.91 2-8-10-16-1	Pd 46 Palladium 104.42 2-8-10-18	Ag 47 Silver 107.87 2-8-10-18-1	Ca 48 Calcium 20.09 2-8-8-2	Sc 49 Scandium 44.95908 2-8-8-3	Ge 50 Germanium 72.630 2-8-8-4					
Ba 56 Barium 137.327 2-8-8-8-2	Lanthanides 57-71	Hf 72 Hafnium 178.49 2-8-10-32-10-2	Ta 73 Tantalum 180.94798 2-8-10-32-12-2	W 74 Tungsten 183.84 2-8-10-32-13-2	Re 75 Rhenium 186.21 2-8-10-32-13-2	Os 76 Osmium 190.23 2-8-10-32-13-2	Ir 77 Iridium 192.22 2-8-10-32-15-2	Pt 78 Platinum 195.08 2-8-10-32-17-1	Au 79 Gold 196.97 2-8-10-32-18-1	Hg 80 Mercury 200.59 2-8-10-32-18-2	Cd 81 Cadmium 114.41 2-8-10-18-2	In 82 Indium 114.82 2-8-10-18-3	Tl 83 Thallium 204.38 2-8-10-32-18-3	Pb 84 Lead 207.2 2-8-10-32-18-4	Bi 85 Bismuth 208.99 2-8-10-32-18-5	Po 86 Polonium (209) 2-8-10-32-18-6	At 87 Astatine (210) 2-8-10-32-18-7
Rf 104 Rutherfordium (267)	Dubnium (268)	Sg 105 Seaborgium (269)	Bh 106 Bohrium (270)	Hs 107 Hassium (270)	Mt 108 Meitnerium (270)	Ds 109 Darmstadtium (280)	Rg 110 Roentgenium (280)	Cn 111 Copernicium (285)	Nh 112 Nhastium (286)	Fl 113 Flerovium (289)	Mc 114 Moscovium (290)	Lv 115 Livermorium (293)	Ts 116 Tennessine (294)	Og 117 Oganesson (294)			

Third Grade

Chemistry

Chapter eight

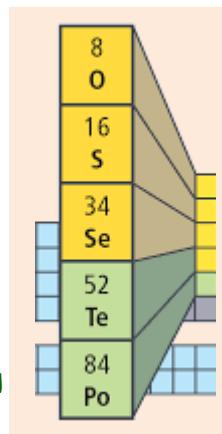
Group VIA

By :Fatin Nady Altimimi

كُن مُعِزِّزًا مع المغزِّين

Sc 223 Radium (225)	Actinides 89-103	Rf 104 Rutherfordium (267)	Dubnium (268)	Sg 105 Seaborgium (269)	Bh 106 Bohrium (270)	Hs 107 Hassium (270)	Mt 108 Meitnerium (270)	Ds 109 Darmstadtium (280)	Rg 110 Roentgenium (280)	Cn 111 Copernicium (285)	Nh 112 Nhastium (286)	Fl 113 Flerovium (289)	Mc 114 Moscovium (290)	Lv 115 Livermorium (293)	Ts 116 Tennessine (294)	Og 117 Oganesson (294)
------------------------------	---------------------	-------------------------------------	------------------	----------------------------------	-------------------------------	-------------------------------	----------------------------------	------------------------------------	-----------------------------------	-----------------------------------	--------------------------------	---------------------------------	---------------------------------	-----------------------------------	----------------------------------	---------------------------------

Introduction


Q : Where are the elements of group six located in the periodic table?

What are the elements of the sixth group?

Group **VIA** elements appear on the right side of the periodic table, they include five elements: Oxygen **O** , sulfur **S** , Selenium **Se** , Tellurium **Te** , Polonium **Po** .

تقع عناصر الزمرة السادسة **VIA** على يمين الجدول الدوري وتضم خمسة عناصر وهي:

(**Po**) والأوكسجين (**O**) والكلور (**S**) والسلينيوم (**Se**) والتيوريوم (**Te**) والبولونيوم (**Po**)

Q : What are the General properties of Group **VIA** ?

Ans:

1 Elements of this group are characterized by gradual increase in their atomic numbers:

a . Oxygen and sulfur are considered as non-metal.

b . Selenium and tellurium have non metallic properties.

c . Polonium, it has pure metal properties.

2 All elements of the group **VIA** has six electrons in the outer shell .

All elements "hunt" two electrons from other elements in order to have a stable electron configuration similar to that of noble elements.

الصفات العامة للزمرة السادسة

1. تدرج خواص هذه العناصر بازدياد اعدادها الذرية حيث

أ - يعد الاوكسجين والكلور من اللافلزات .

ب - يمتلك كل من السلينيوم والتيوريوم صفات اشباه بالفلزات .

ج - البولونيوم له صفات فلزية تامة .

2 - أن جميع عناصر الزمرة السادسة تمتلك ست الكترونات في الغلاف الخارجي .

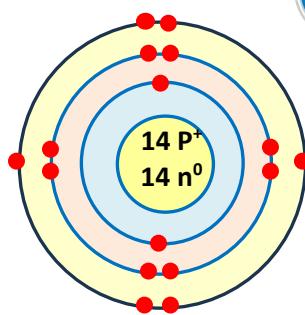
تميل لأكتساب إلكترون من العناصر الأخرى لكي تمتلك ترتيباً كترونياً مستقراً مشابهاً لترتيب العناصر النبيلة.

Q : Explain the gradient in the metallic properties of the elements of the sixth group?

Ans : point (1) .

سؤال : وضح التدرج في الخواص الفيزيائية لعناصر المجموعة السادسة؟

Don't give up, great things take time.


Sulfur

Chemical symbol : S

Atomic number : 16

Mass number : 32

Symbol of shell	Shell number(n)	Number of electron
K	1	2
L	2	8
M	3	6

Occurrence of sulfur :

Q: Where is Occurrence of Sulfur?

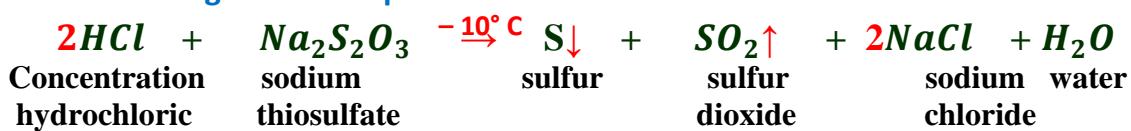
1 . Sulfur is found in nature freely in special sulfur mines in Mosul city, Mishraq region , Northern Iraq.

2 . It is also found in volcanic regions in large quantities in the form of compounds such as hydrogen sulfide H_2S and sulfur dioxide SO_2 which evaporate with other volcanic gases.

وجوده

Sulfur is a smelly, combative element found in grenades and gunpowder.

S


1 - يوجد الكبريت في الطبيعة بصورة عنصر حر في مناجم خاصة كما هو الحال في مناجم كبريت المشراق في الموصل .

2 - كما يوجد الكبريت بكميات كبيرة على شكل مركبات في المناطق البركانية مثل غاز كبريتيد الهيدروجين H_2S وثنائي أوكسيد الكبريت SO_2 .

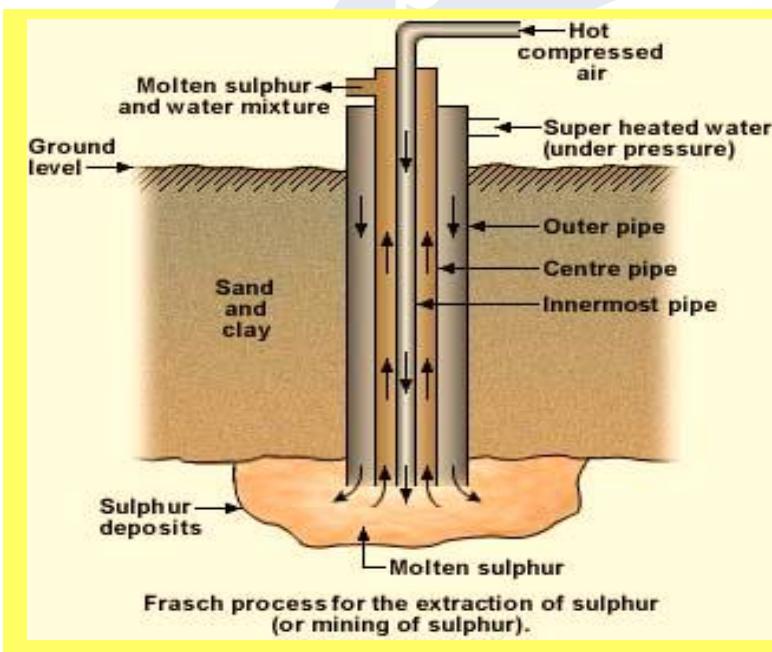
Preparation of sulfur in laboratory:

Q: How to Preparation of Sulfur ?

Sulfur can be prepared in laboratory by adding concentrated hydrochloric acid to sodium thiosulfate $Na_2S_2O_3$ at (-10° C). sulfur precipitates and collected through filtration according to the following reaction equation:

تحضير الكبريت مختبرياً :

يحضير الكبريت مختبرياً من إضافة حامض الهيدروكلوريك المركز إلى محلول ثايوكبريتات الصوديوم $Na_2S_2O_3$ بدرجة (-10° C) يتربس الكبريت ويجمع بالترشيح .


Extraction of sulfur

Q: How to Extraction of Sulfur?

Sulfur is extracted freely in the form of underground deposits by using **Frasch Process**.

This process is done by

- ① Melting sulfur underground by means of special equipment, consisting of three overlapping tubes pivotally centered , as follows :
- ② Pressurized and superheated to 170°C water vapor is pushed into the outer tube (A) to where sulfur converges, this pressure melts sulfur underground.
- ③ Pressurized air from tube B lifts up molten sulfur through tube C, the middle tube. Sulfur comes out to the surface from this tube mixed with some air bubbles
- ④ On the surface, molten sulfur is cast in large basins and left to cool down and solidify
- ⑤ Much of the sulfur produced 99.5%-99.9% pure, therefore in needs no further re purification.

يسخرج الكبريت الحر من الأرض بطريقة فراش .

1. وتم ببصهر الكبريت في باطن الأرض بمد ثلاث انباب داخل بعضها البعض متمحورة مركزاً .
2. يدفع بخار الماء المضغوط والمسخن إلى درجة (170°C) في الأنبوبة الخارجية (أ) إلى مكان تجمع الكبريت مما يؤدي إلى انصهار الكبريت وهو داخل الأرض.
3. والذي سيرفعه الهواء المضغوط الذي يضخ من الأنبوبة الداخلية (ب) إلى أعلى فيخرج الكبريت المنصهر من الأنبوبة (ج) الوسطى مختلطًا ببعض فقاعات الهواء إلى سطح الأرض .
4. وعند السطح يصب الكبريت المنصهر في أحواض كبيرة ويترك لكي يبرد ويتصلب.
5. أن أغلب الكبريت المنتج بهذه الطريقة له درجة نقاوة تتراوح ما بين (99.9 - 99.5 %) ولا يحتاج إلى إعادة تنقية.

Q: What are the Physical Properties of Sulfur ?

- ① It is yellow solid substance at **STP**.
- ② Tasteless, with distinctive odor.
- ③ Insoluble in water, yet dissolves in some inorganic solvents like CS_2 carbon disulfide.
- ④ Non-conductor of electricity.
- ⑤ Has various forms in nature with variant physical properties.

1. مادة صلبة في الظروف القياسية ذات لون أصفر.
2. عديم الطعم ذو رائحة مميزة.
3. لا يذوب في الماء ولكن يذوب في بعض المذيبات اللاعضوية مثل ثانوي كبريتيد الكربون CS_2 .
4. غير موصل للتيار الكهربائي.
5. له صور متعددة في الطبيعة تتباين في صفاتها الفيزيائية .

Note : If carbon disulfide is evaporated, sulfur with (8) atoms (S_8) deposits gradually in the form crystals .

ملاحظة : اذا تم تبخير CS_2 تدريجياً يتربس الكبريت (S_8) على شكل بلورات ذات تركيب معيني " ثماني " الشكل

Note : Sulfur and other elements have many forms (allotropes) which vary in physical form, color despite belonging to the same element. This elements as called as allotropic element يمتلك الكبريت وبعض العناصر الأخرى العديد من الصور وهي إشكال مختلفة الخواص الفيزيائية كالشكل واللون تعود للعنصر نفسه. هذه العناصر تسمى النظائر .

Q: What are the main allotropes " forms " of sulfur?

1 **Crystalline sulfur** . (Rhombic crystal sulfur) is the most common type, it is a **yellow** crystal (lemon like) stable at room temperature.

It is the most stable form of sulfur. It is found as cyclic (S_8) molecule in volcanic areas.

There is another type of crystal sulfur , called the prismatic, because its crystals look like prism.

2 **Non-crystalline sulfur**, like rubber or plastic sulfur . It is called **(Amorphous sulfur)** .

It can be prepared by heating sulfur to **1500°C** and pouring the liquid sulfur into cold water ,whereby spiral chains are formed.

less stable than crystal sulfur, it turns to crystal sulfur gradually.

Q : How can amorphous sulfur be prepared?

Ans : It can be prepared by heating sulfur to **1500°C** and pouring the liquid sulfur into cold water ,whereby spiral chains are formed.

أشكال الكبريت : 1 - **الكبريت المعيني**: وهو النوع الأكثر شيوعاً وهو مادة بلورية صفراء ليمونية اللون وثابتة عند درجة حرارة الغرفة وهو أكثر الصور استقراراً ويوجد على شكل بلورات كبيرة صفراء في المناطق البركانية . وهناك نوع آخر من الكبريت يسمى **الكبريت الموشوري (عل)** ويسمى بالموشوري لأن بلوراته تشبه المنشور.

2: **الكبريت غير البلوري** : ومن أمثلتها **الكبريت المطاطي** أو **الكبريت اللدن** .

س / كيف يمكن تحضير الكبريت المطاطي؟

الجواب / يحضر الكبريت المطاطي من تسخين الكبريت الى **(C 1500)** وصب سائل الكبريت في الماء البارد حيث يتكون الكبريت المطاطي الذي يحتوي على سلاسل حلزونية .

Q : Which is more stable, crystal sulfur or Non-crystalline sulfur?

Ans: The crystal sulfur, is more stable from Non-crystalline sulfur .

الكبريت البلوري أكثر استقراراً من الكبريت غير البلوري .

Note : Sulfur has the formula S_8 and S_6 , the first form is more active than the latter (**why** **تعليل** due to the high tension of the rhombic ring .

Why : The formula S_8 is more active than the formula S_6 latter ?

Ans : Due to the high tension of the rhombic ring .

ملاحظة : يمتلك الكبريت الصيغة (S_8) والصيغة (S_6).

صورة الكبريت (S_8) أنشط من صور الكبريت (S_6) بسبب التوتر الشديد على حلقة الكبريت الثمانية .

Chemical Properties of Sulfur

Sulfur is not reactive under normal temperatures, but when **heated** it gets active and reacts chemically, reacts with almost all elements directly under the appropriate temperature.

يكون الكبريت غير فعال في درجات الحرارة الاعتيادية ولكن عند تسخينه يصبح نشطاً ويتفاعل كيميائياً. يتفاعل مع جميع العناصر تقريباً تحت درجة الحرارة المناسبة

A. Reaction with non-metals:

① **Reaction with non-metals:** Sulfur burns easily in air producing blue flame, reacts with oxygen gas and releases a huge amount heat.

② **Sulfur reacts with carbon to produce carbon sulfate CS_2 :**

أ: التفاعل مع الالفلزات :

① يحترق الكبريت بسهولة في الهواء بلهب أزرق متحداً مع الأوكسجين الجوي مع توليد كمية كبيرة من الحرارة .

② يتفاعل الكبريت مع الكاربون ليعطي سائل ثانوي كبريتيد الكاربون. CS_2

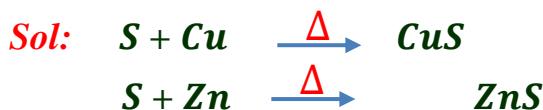
B . Reaction with metals: Sulfur reacts with metals like iron, copper and zinc to produce metal sulfides : $S + Fe \xrightarrow{\Delta} FeS$

ب : التفاعل مع الفلزات: يتفاعل الكبريت مع الفلزات كالحديد والنحاس والزنك ليعطي كبريتيداتها

C . Reaction with concentrated and oxidized acids:

① **Sulfur is not affected by dilute acids while it is oxidized with concentrated acids such as hot sulfuric acid, producing non-metallic oxides:**

② **With concentrated nitric acid, it produces non-metal oxides of NO_2 :**



ج. التفاعل مع الأحماض المركزية والمؤكسدة:

1. لا يتأثر الكبريت بالأحماض المخففة بينما يتأكسد مع الأحماض المركزية مثل حامض الهيدروكلوريك الساخن ، ينتج أكسيدات فلزية.

2. يتفاعل مع حمض النيتريك المركز ، ينتج أكسيدات غير معدنية من NO_2

Exercise 8 – 1 : Write sulfur reaction equations with copper and zinc .

Even into the deepness of the dark, there's always a hope.

Uses of sulfur

Q : What are the uses of sulfur?

Sulfur has many uses in industrial and agricultural fields,

- 1 It is used in matchsticks and black gunpowder and fireworks because of high flammability.
- 2 It is used in agriculture to balance earth alkaline as well as a fertilizer.
- 3 It is used to produce sulfuric acid, paints .
- 4 It is used mining metals and oil refinery , films and drug industry.

تعليل

أستعمالات الكبريت : للكبريت استخدامات عديدة في المجالات الصناعية والزراعية فهو :

- 1 - يدخل في صناعة الثقب والبارود الأسود والألعاب النارية بسبب قابليته العالية للأشتعال .
- 2 - يستخدم في الزراعة لمعادلة قلوية التربة و أيضاً كسماد .
- 3 - تحضير حامض الكبريتิก، الأصباغ .
- 4 - يُستخدم في تعدين الفلزات وفي تصفيه(تكرير) النفط وفي أفلام التصوير وصناعة الأدوية.

Sulfur Dioxide

Q : How can SO_2 produced naturally ?

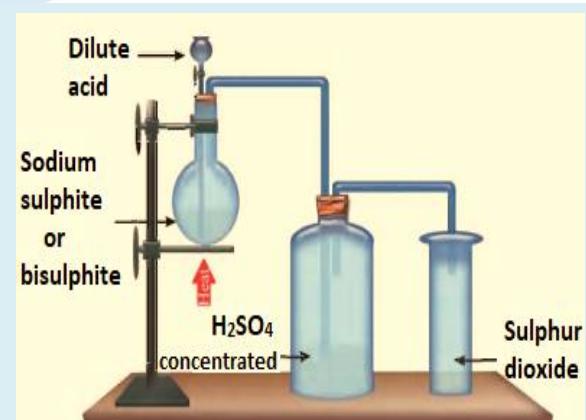
Ans :

- 1 Sulfur dioxide SO_2 is produced mainly by burning sulfur with oxygen gas.
- 2 This gas naturally evaporates in large quantities from volcanic activities.
- 3 It is also generated from some industrial processes during mining of some substances
- 4 and burning of petroleum derivatives and briquette.

سؤال كيف يتولد غاز SO_2 طبيعياً؟

الجواب: 1. يتولد غاز ثاني أوكسيد الكبريت SO_2 بشكل رئيسي من احتراق الكبريت بوجود الأوكسجين .

2. يتصاعد هذا الغاز بكميات كبيرة في الطبيعة من جراء النشاطات البركانية


3. ويترافق ذلك من بعض العمليات الصناعية أشعة تدعى بعض العناصر واستخلاصها

4. كذلك نتيجة لحرق المشتقات النفطية أو الفحم الحجري.

Q: How sulfur dioxide is prepared in the laboratory?

Sulfur dioxide is prepared at laboratory by adding dilute sulfuric acid to sodium sulfite(Na_2SO_3).

It can be collected by pumping air out from above because it is heavier than air.

تحضيره مختبرياً : يحضر غاز ثاني أوكسيد الكبريت مختبرياً من إضافة حامض الكبريتيك المخفف إلى كبريتات الصوديوم Na_2SO_3 ولكونه أثقل من الهواء يمكن أن يجمع عن طريق إزاحة الهواء إلى الأعلى (عل) لأنها أثقل من الهواء.

Physical properties

Q : Enumerate properties of sulfur dioxide .

① Sulfur dioxide is colorless gas with a strong characteristic smell.

② It is heavier than air.

③ It does not dissolve much in water producing a weak solution of sulfurous acid:

سؤال : عدد خواص غاز ثاني أوكسيد الكبريت ؟

غاز عديم اللون ذو رائحة نفاذة قوية . ① يذوب قليلاً في الماء مولداً محلولاً لحامض الكبريتوز الضعيف

Why : The color of the wet blue litmus paper is turned to red when it is put in the bottle contain sulfur dioxide?

Ans : Because of the effect of the sulfurous acid which results according to the above

عل : عند وضع ورقة زهرة الشمس الزرقاء المبللة بالماء في قنفية تحتوي على غاز ثاني أوكسيد الكبريت

يتتحول لونها إلى اللون الأحمر؟

الجواب : نتيجة تأثير حامض الكبريتوز المترافق من ذوبان غاز SO_2 في الماء .

Q : The color of the blue litmus paper is turned to ----- when it is put in the bottle contain sulfur dioxide. Ans : Red .

Q: How to produce SO_2 industrially?

Ans : By the combustion of sulfur in air. The molten sulfur is pumped in special combustion towers. The resultant gas contains some impurities which need to be removed.

س/ كيف يتم إنتاج ثاني أوكسيد الكبريت صناعياً؟

الجواب : من احتراق الكبريت في الهواء. يتم ضخ الكبريت المنصهر في أبراج احتراق خاصة. يحتوي الغاز الناتج على بعض الشوائب التي يجب إزالتها.

Q: What are uses for SO_2 ?

- ① Sulfur dioxide is commercially used in decolorizing the delicate organic substances such as paper, straw, artificial silk and wool which changed when they are bleached with gas chlorine.
- ② This gas used for sterilizing purposes by the process of combustion some quantities inside the places that need to be sterilized. This bleaching effect dose not normally for long time .
- ③ It is used as a preservative agent in food industries.

س/ ماهي استعمالات ثاني أوكسيد الكبريت

1. يستخدم ثاني أوكسيد الكبريت تجاريًّا في إزالة اللون من المواد العضوية الحساسة مثل الورق، والحرير، والصوف الاصطناعي التي تتغير عندما يتم تبييضها بغاز الكلور.
2. يستخدم هذا الغاز لأغراض التعقيم من خلال عملية حرق الكميات داخل الأماكن التي تحتاج إلى تعقيم.
3. يتم استخدامه كعامل حافظة في الصناعات الغذائية.

Note: Most of the SO_2 bleached materials recover their colors as soon as they exposed to air.

Note : Sulfur can burn spontaneously in air at (400°C) with the existence of oxygen . The combustion release sulfur dioxide which has an **odor smell**.

ملاحظة : يمكن أن يحترق الكبريت تلقائياً في الهواء عند (400°C) مع وجود الأكسجين. وينتج عنه ثاني أكسيد الكبريت الذي له رائحة نفاذة.

Q: What are the disadvantages of sulfur dioxide gas?

Ans : It has very damages health effects on humans, animals and plants. It is also the main cause of acid rains.

سؤال: ما هي مضار غاز ثاني اوكسيد الكبريت ؟

الجواب : له آثار صحية سيئة جداً على الإنسان والحيوان والنبات كما أنه من أكثر مسببات الأمطار الحامضية.

Hydrogen Sulfide H_2S

Hydrogen Sulfide is a colorless gas with a characteristic foul odor of rotten eggs.

Q: How occurs Hydrogen sulfide in nature ?

- ① The bacterial breakdown of the organic matters.
- ② Underground water that contains sulfur as in the mineral water wells in Hammam Al-Aleel in Nineveh Province north of Iraq.
- ③ From the biological activity of some kinds of bacteria that rely of iron and manganese as part of their food sources.
- ④ Hydrogen sulfide occurs in almost all the natural and petroleum gases.

Natural gas contains 28% of hydrogen sulfide.

Because of this, cause air pollution in the regions where it's produced and in refineries .

- ⑤ There also be gas emissions in the industries that use sulfur compounds.

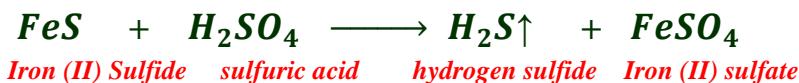
س: كيف يوجد كبريتيد الهيدروجين في الطبيعة

غاز كبريتيد الهيدروجين H_2S هو غاز عديم اللون ذو رائحة كريهة نفاذة كرائحة البيض الفاسد.

يتكون في الطبيعة كما يلي :

- 1 - التحلل البكتيري للمواد العضوية
- 2 - تحلل المياه الجوفية المحتوية على المواد الكبريتية كما في العيون الكبريتية في حمام العليل .
- 3 - من النشاط الحيوي للبكتيريا التي تستخدم الحديد والمنقذير كجزء من غذائها.
- 4 - يوجد في الغازات النفطية والطبيعة .

يحتوي الغاز الطبيعي على 28 % منه. يتسبب في تلوث الهواء في المناطق التي يوجد بها إنتاج للغاز الطبيعي.


- 5 - من الممكن أن ينبعث الغاز من خلال الصناعات التي ترتكز على مركبات الكبريت.

Q: How Hydrogen Sulfide (H_2S) prepared in the laboratory?

Hydrogen sulfide gas can be produced in laboratories using the same device used to produce SO_2 .

The device is based on the reaction of the diluted acids such as sulfuric acid with metal sulfides such as iron sulfide (II)

تحضير غاز كبريتيد الهيدروجين :

يحضر غاز كبريتيد الهيدروجين في المختبر بالجهاز نفسه الذي استخدم في تحضير SO_2 .

يحضر غاز كبريتيد الهيدروجين في من تفاعل الحوامض المخففة مثل حامض الكبريتิก مع كبريتيدات الفلزات مثل كبريتيد الحديد (II).

Q: How hydrogen sulfide gas is detected?

Passing hydrogen sulfide gas through in the solutions of metal ions like copper sulfide results a black precipitation of copper II sulfide according to the following equation:

الكشف عن غاز كبريتيد الهيدروجين :

عند إمرار غاز كبريتيد الهيدروجين في محليل الأيونات الفلزية مثل محلول كبريتات النحاس، نلاحظ تكوين راسب أسود هو كبريتيد النحاس.

Sulfuric Acid H_2SO_4

Sulfuric acid H_2SO_4 is one of the earliest acids identified by Arabs in early eighth in an century .

يعد حامض الكبريتيك من أوائل الحوامض التي تم التعرف عليها ، حيث عرفه العرب منذ القرن الثامن الميلادي

Q : Mention the physical properties of sulfuric acid .

- 1 Sulfuric acid is a colorless oily liquid .
- 2 It has high density (1.84 g/cm^3).
- 3 It has no characteristic smell when it is pure.
- 4 It is a highly corrosive strong acid.
- 5 It is soluble in water at all concentrations.
- 6 Its solutions have high electrical conductivity.

1 - سائل عديم اللون زكي القوام .

2 - ذي كثافة عالية تبلغ 184 g/ml^3

3 - لا رائحة له عندما يكون نقىًّا .

4 - حامض معدني قوي

5 - يذوب في الماء بجميع التراكيز .

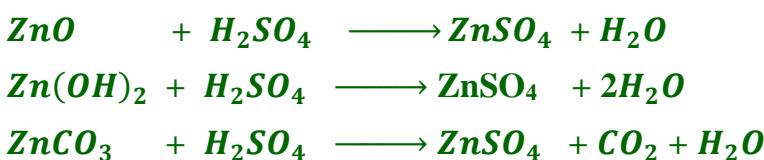
6 - محليله موصلة للتيار الكهربائي.

Q: What are the Uses of Sulfuric Acid?

Every year, large quantities of sulfuric acid are being produced more than any other chemical substance. the acid is used for many purposes:

- 1 . It is used in the production of other acids such as nitric and hydrochloric acids because of its high boiling point. **علل**
- 2 . It is used as a drying agent especially with gases which do not react with it because of its high ability to react with water **علل مهم**
- 3 . It is used to refine crude oil and remove impurities.
- 4 . It is used in the production of explosives like nitroglycerin nitrates and cellulose nitrates.
- 5 . It is used as a cleaning agent to remove **rust** from the iron tools before being painted with zinc.
- 6 . It is widely used in the production of batteries (**lead storage batteries**) and also in the electrical coating because of its high electrical conductivity. **علل مهم**
- 7 . It is used in the production of chemical fertilizers such as ammonium sulfates and phosphate fertilizers.

عدد أستعمالات حامض الكبريتيك


ينتج حامض الكبريتيك سنوياً بكميات كبيرة تفوق أي مادة كيميائية أخرى. ويستعمل الحامض لاغراض متعددة اهمها:

- 1 - في تحضير الحوامض الأخرى، كحامض النتريك والهيدروكلوريك بسبب درجة غليانه العالية.
- 2 - في تجفيف المواد، لاسيما الغازات التي لا تتفاعل معه بسبب ميله الشديد للاتحاد بالماء.
- 3 - في تنقية البترول، وازالة الشوائب عنه.
- 4 - في صناعة المتفجرات كنترات الكليسيرين ونترات السيليلوز.
- 5 - في اذابة الصدأ الذي يكسو الادوات الحديدية قبل طلائتها بالخارصين.
- 6 - في صناعة البطاريات (بطاريات الخزن الرصاصية) وفي الطلاء الكهربائي بسبب نقل محاليله للتثبيت الكهربائي.
- 7 - في صناعة الاسمدة الكيميائية مثل كبريتات الامونيوم والاسمدة الفوسفاتية.

Sulfates:

Sulfates are sulfuric acid salts which are derived from the reaction of sulfuric acid with the metals or with their oxides, hydroxides or carbonates .

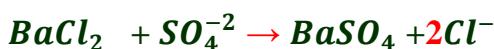
The result of such a reaction is the formation of metal sulfate salts as in the equations below:

Name of Zinc compounds

ZnO : Zinc oxide

ZnSO₄ : Zinc sulfate

Zn(OH)₂ : Zinc hydroxide


ZnCO₃ : Zinc carbonate

الكبريتات : هي املاح حامض الكبريتيك الناتجة من تفاعل حامض الكبريتيك مع الفلزات أو أكسيداتها أو هيدروكسيداتها أو كاربوناتاتها تتكون أملاح الكبريتات الفلزية كما في حالة فلز الخارصين وأوكسيد الخارصين وهيدروكسيد الخارصين وكاربوناتات الخارصين.

Test of sulfate ion, SO_4^{2-} **Q: How is sulfate ion detected?**

Sulfate ions can be identified in their aqueous solution by adding the solution which contains barium ions such as barium chloride. The result is a white precipitation of barium sulfate:

الكشف عن أيون الكبريتات

يمكن الكشف عن أيونات الكبريتات في محلولاتها المائية بإضافة محلول يحتوي على أيونات الباريوم مثل كلوريد الباريوم إليها حيث سيتكون راسب من كبريتات الباريوم البيضاء .

Chapter question**8**

Q1: Properties of **VIA** group elements are arranged from **oxygen** to **polonium**. Write the properties.

1. يتم ترتيب خواص عناصر الزمرة **VIA** من الأوكسجين إلى البولونيوم. أكتب الخواص .

Ans : Page " 122 "

Q2. Write the common electron configuration of **VIA** group elements.

2. أكتب الصفة الإلكترونية المشتركة لعناصر الزمرة السادسة **VIA** ؟

Ans : All elements of the group **VIA** has six electrons in the outer shell . (page 122)

Q3: Choose the correct answer :

1 Sulfur element occurs, in nature, in the form of.....

a. Only free b. only combined c. Free and combined

3. عنصر الكبريت يوجد ، في الطبيعة ، في شكلأ .

أ. فقط حر . ب. فقط على شكل مركب . ج. حر ومركب .

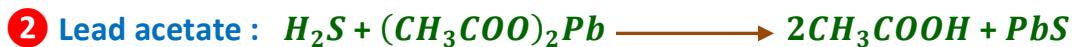
2 Some elements, such as **sulfur**, **phosphorous** and **carbon**, occur in their **solid states** in different forms: they are characterized form each other in some physical properties, these forms are called:

a. Element isotopes b. Elements shape
c. Elements forms d. Elements types

توجد بعض العناصر ، مثل الكبريت والفوسفور والكاربون ، في حالاتها الصلبة بأشكال مختلفة: فهي تميز بعضها ببعض في بعض الخصائص الفيزيائية ،

وتشتت هذه الأشكال: 1. نظائر العنصر 2. شكل العنصر 3. صور العناصر 4. أنواع العناصر

3 One of free following solid molecules contains eight atoms, that is


a. White phosphorus b. Iodine
c. Sulfur d. Carbon

3. من بين الجزيئات الصلبة الآتية في الحالة الهرة جزيء واحدة يحتوي على ثمان ذرات هو جزيء:

أ. الفسفور الأبيض ب. اليود ج. الكبريت د. الكربون

Q4 . What happens when hydrogen sulfide gas is passed in :

Q5 . The underground deposit of sulfur is extract as in the Mishraq fields, according to Frasch process: which three concentric pipes extended to different deep. According to Frasch process (in your book)

a. **What is the role of the pipe (B) in this process**

Ans : Pressurized air from tube B lifts up molten sulfur through tube C.

b. **What is the passed through the inside pipe (C) .**

Ans : Sulfur comes out to the surface from this tube .

c. **Explain how you could get water 170°C while it boils at 100°C.**

Ans : When heating water under high pressure .

8. يستخرج الكبريت الحر الموجود تحت الأرض كما في حقول المشراق بطريقة فراش التي تتضمن مد ثلات أنابيب متحدة المركز إلى أعماق مختلفة من باطن الأرض. حسب طريقة فراش :

أ. ما هو دور الأنابيب (ب) في هذه العملية ب. ماذا يمر من خلال الأنابيب داخل (ج).

ج. أشرح كيف يمكنك الحصول على الماء 170 درجة منوية في حين يبقى عند 100 درجة منوية.

Q6 . If you have a mixture of very fine table salt , chalk and sulfur , describe an experimental method to separate these materials in dry and pure form .

6. إذا كان لديك خليط من ملح الطعام الناعم ، الطباشير و الكبريت ، قم بوصف تجربة لفصل هذه المواد في شكل جاف ونقى.

Ans : a - Add a quantity of water to dissolve the salt and then filter and we heat the leachate and evaporate the water to get salt crystals.

b - we take the residual deposit and add CS_2 , which works on the melting of sulfur and then filter the solution and then copy the leachate to evaporate leachate to get the sulfur.

c. The remainder is chalk powder.

Q7 . Write the reaction of sulfur with metal and non-metal.

Ans : Reaction with metals $S + Fe \xrightarrow{\Delta} FeS$

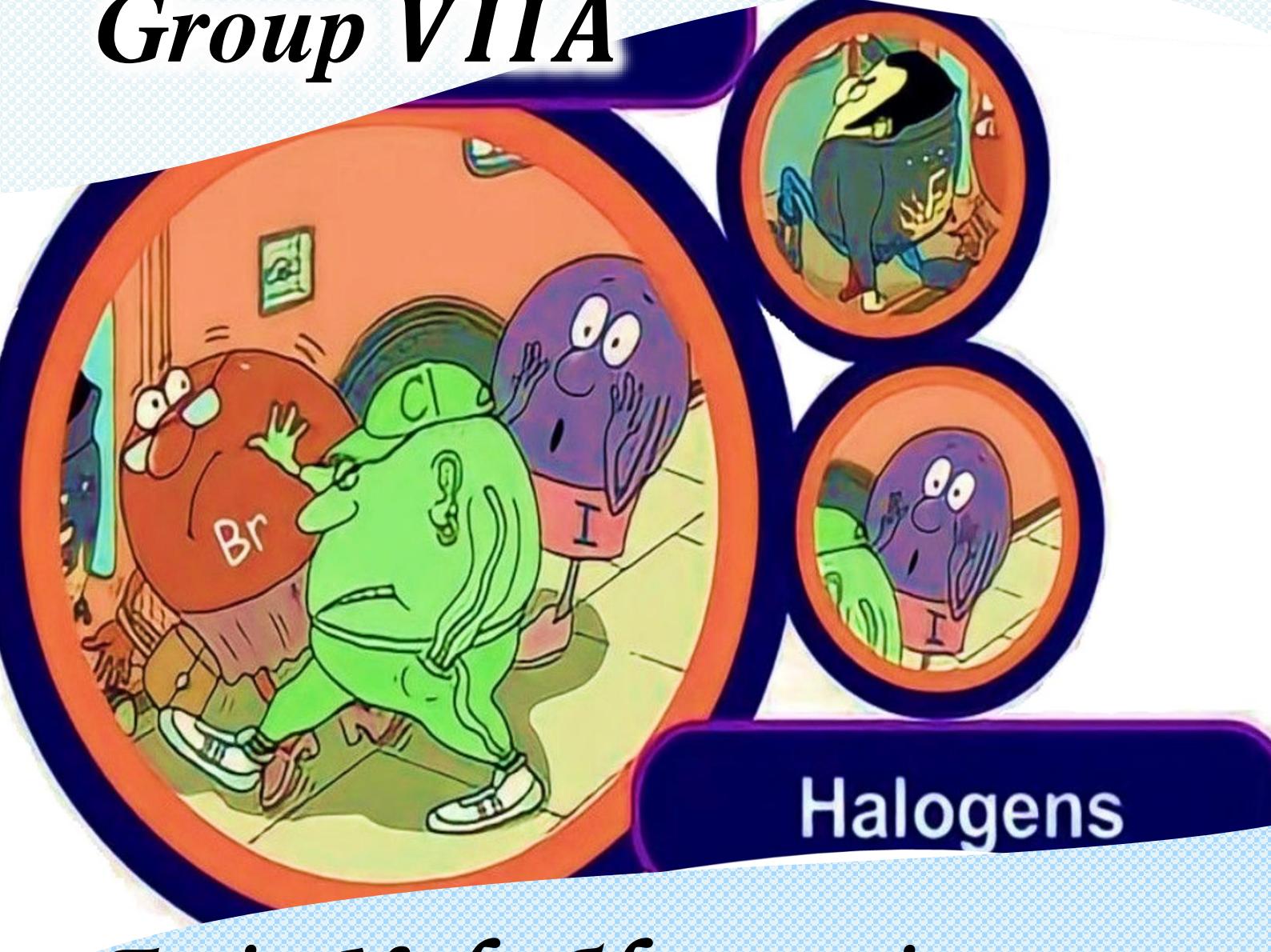
Reaction with non-metals $S + O_2 \xrightarrow{\Delta} SO_2$



Q8 . Explain the preparation of Sulfuric Acid with industrial method.

Ans : Page " 128 "

Q9 . Complete the following reaction :



Calcium 40078 2-8-2	Scandium 44.95908 2-8-2	Titanium 47.867 2-8-10	Vanadium 50.9415 2-8-10	Chromium 51.9961 2-8-10	Manganese 54.938044 2-8-8-2	Iron 55.845 2-8-10	Cobalt 58.933 2-8-10	Nickel 58.693 2-8-6-2	Copper 63.546 2-8-16	Zinc 65.38 2-8-8-2	Gallium 69.723 2-8-10
38 Sr Strontium 87.62 2-8-18-2	39 Y Yttrium 88.90584 2-8-18-2	40 Zr Zirconium 91.224 2-8-18-10-2	41 Nb Niobium 92.90637 2-8-18-12-1	42 Mo Molybdenum 95.95 2-8-18-13-1	43 Tc Technetium (98) 2-8-18-13-2	44 Ru Ruthenium 101.07 2-8-18-15-1	45 Rh Rhodium 102.91 2-8-18-16-1	46 Pd Palladium 104.42 2-8-18-18	47 Ag	48	
56 Ba Barium 137.227 2-8-18-18-2	57-71 Lanthanides	72 Hf Hafnium 178.49 2-8-18-32-10-2	73 Ta Tantalum 180.94788 2-8-18-32-10-2	74 W Tungsten 183.84 2-8-18-32-12-2	75 Re Rhenium 186.21 2-8-18-32-13-2	76 Os Osmium 190.23 2-8-18-32-12-2	77 Ir Iridium 192.24 2-8-18-32-12-2				
104 Pd		105 Pt		106							

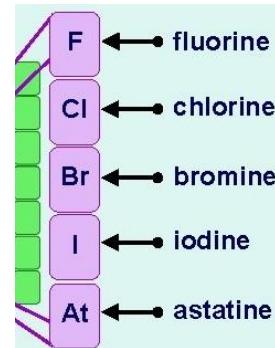
Third Grade

Chapter Nine

Group VIIA

Halogens

Fatin Nadia Al tememi


مکتبہ میراث

Fr Francium (223) 2.8-18-32-8-1	Ra Radium (88) 2.8-18-32-8-2	Rf Rutherfordium (267) 2.8-18-32-32-10-2	Db Dubnium (105) 2.8-18-32-32-11-2	Sg Seaborgium (106) 2.8-18-32-32-12-2	Bh Bhertium (107) 2.8-18-32-32-13-2	Hs Hassium (108) 2.8-18-32-32-13-2-1	Mt Mollibrium (109) 2.8-18-32-32-13-2-1-1	Ds Darmstadtium (110) 2.8-18-32-32-13-2-1-1	Rg Roentgenium (111) 2.8-18-32-32-13-2-1-1	Cn Copernicium (113) 2.8-18-32-32-13-2-1-1	Nh Nhthium (114) 2.8-18-32-32-13-2-1-1	Fl Flerovium (115) 2.8-18-32-32-13-2-1-1	Mc Moscovium (116) 2.8-18-32-32-13-2-1-1	Lv Livermorium (117) 2.8-18-32-32-13-2-1-1
Fr Francium (223) 2.8-18-32-8-1	Ra Radium (88) 2.8-18-32-8-2	Rf Rutherfordium (267) 2.8-18-32-32-10-2	Db Dubnium (105) 2.8-18-32-32-11-2	Sg Seaborgium (106) 2.8-18-32-32-12-2	Bh Bhertium (107) 2.8-18-32-32-13-2	Hs Hassium (108) 2.8-18-32-32-13-2-1	Mt Mollibrium (109) 2.8-18-32-32-13-2-1-1	Ds Darmstadtium (110) 2.8-18-32-32-13-2-1-1	Rg Roentgenium (111) 2.8-18-32-32-13-2-1-1	Cn Copernicium (113) 2.8-18-32-32-13-2-1-1	Nh Nhthium (114) 2.8-18-32-32-13-2-1-1	Fl Flerovium (115) 2.8-18-32-32-13-2-1-1	Mc Moscovium (116) 2.8-18-32-32-13-2-1-1	Lv Livermorium (117) 2.8-18-32-32-13-2-1-1
Fr Francium (223) 2.8-18-32-8-1	Ra Radium (88) 2.8-18-32-8-2	Rf Rutherfordium (267) 2.8-18-32-32-10-2	Db Dubnium (105) 2.8-18-32-32-11-2	Sg Seaborgium (106) 2.8-18-32-32-12-2	Bh Bhertium (107) 2.8-18-32-32-13-2	Hs Hassium (108) 2.8-18-32-32-13-2-1	Mt Mollibrium (109) 2.8-18-32-32-13-2-1-1	Ds Darmstadtium (110) 2.8-18-32-32-13-2-1-1	Rg Roentgenium (111) 2.8-18-32-32-13-2-1-1	Cn Copernicium (113) 2.8-18-32-32-13-2-1-1	Nh Nhthium (114) 2.8-18-32-32-13-2-1-1	Fl Flerovium (115) 2.8-18-32-32-13-2-1-1	Mc Moscovium (116) 2.8-18-32-32-13-2-1-1	Lv Livermorium (117) 2.8-18-32-32-13-2-1-1
Fr Francium (223) 2.8-18-32-8-1	Ra Radium (88) 2.8-18-32-8-2	Rf Rutherfordium (267) 2.8-18-32-32-10-2	Db Dubnium (105) 2.8-18-32-32-11-2	Sg Seaborgium (106) 2.8-18-32-32-12-2	Bh Bhertium (107) 2.8-18-32-32-13-2	Hs Hassium (108) 2.8-18-32-32-13-2-1	Mt Mollibrium (109) 2.8-18-32-32-13-2-1-1	Ds Darmstadtium (110) 2.8-18-32-32-13-2-1-1	Rg Roentgenium (111) 2.8-18-32-32-13-2-1-1	Cn Copernicium (113) 2.8-18-32-32-13-2-1-1	Nh Nhthium (114) 2.8-18-32-32-13-2-1-1	Fl Flerovium (115) 2.8-18-32-32-13-2-1-1	Mc Moscovium (116) 2.8-18-32-32-13-2-1-1	Lv Livermorium (117) 2.8-18-32-32-13-2-1-1

Introduction

Q : Mention the elements of group seven (7A) ?

Elements of 7A group are fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At).

Elements of this group are called as **halogens**, having extremely non-metallic properties and highly active, therefore, they are not found freely in nature but combined with other elements. **علل**

Q : Why element of group 7A not found freely in nature?

Ans : Because they are highly active .

عناصر هذه الزمرة هي الفلور (F) والكلور (Cl) والبروم (Br) واليود (I) والاستاتين... (At) وتسمى عناصر الزمرة بالهالوجينات. عناصر هذه المجموعة تتميز بخواص لافازية عالية وهي شديدة الفعالية لذا لا توجد حرفة في الطبيعة بل متحدة مع غيرها من العناصر.

Note : They have similar physical and chemical properties with a gradual shift in this properties . There is also a difference in other properties .

ملاحظة : تتشابه عناصر هذه الزمرة في كثير من خواصها الفيزيائية أو الكيميائية مع وجود تدرج واضح في هذه الخواص إضافة إلى ذلك يوجد بينها بعض الاختلاف في خواص أخرى.

Q: What are the general properties of group seven VIIA?

- 1 All elements of this group has seven electrons in the outer shell and tend to gain one electron during reactions to fill its outer shell. Electron gaining differs gradually from Fluorine to Iodine.
- 2 Halogens are found in normal temperatures in various physical forms , fluorine F_2 and chlorine Cl_2 are gases , as for bromine Br_2 is a liquid, iodine I_2 is a solid.
- 3 Halogens are colorful substance because they absorb some of the visible rays.
- 4 Boiling and melting points for halogens increase with the increase in atomic number.

1. تحتوي جميع عناصر هذه الزمرة على سبعة الكترونات في غلافها الخارجي وتميل في تفاعلاتها إلى اكتساب الكترون واحد لاشتاء غلافها الخارجي . وتدرج قابليتها على اكتساب الالكترون من الفلور إلى اليود.
- 2 - توجد الهالوجينات في درجة الحرارة الاعتيادية في حالات فизيائية مختلفة فالفلور والكلور غازات اما البروم فهو سائل واليود صلب.
- 3 - الهالوجينات مواد ملونة لأنها تتصب جزء من الاشعة المرئية التي تسقط عليها.
- 4 - تزداد درجة انصهار وغليان الهالوجينات مع ازدياد العدد الذري.

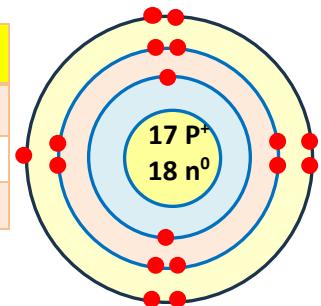
Q : Why , all elements in group seven tend to gain one electron during reactions ?

Ans : Because the elements of this group has seven electrons in the outer shell ,so they tend to fill its outer shell.

Q : Explain the gradient in the physical forms of the elements of the sixth group?

Ans : Point (2).

Q : Arrange the following elements according to increasing in boiling point : 17 Cl , 35 Br , 9 F


Chlorine

Chlorine : It was first introduced by the well known scientist Scheele, from the reaction between manganese (IV) oxide MnO_2 with concentrated hydrochloric acid.

تم تقديمها لأول مرة من قبل العالم المعروف شيله ، من التفاعل بين أكسيد المنغنيز (IV) $2MnO$ مع حامض الهيدروكلوريك المركز.

Chemical symbol: Cl

Symbol of shell	Shell number	Number of electron
K	1	2
L	2	8
M	3	7

The configuration shows that chlorine atom tends to gain one electron to fill the outer shell therefore it monovalent and its oxidation number is (-1) in compounds because it tends to gain one electron to form of negative chlorine ion Cl^- .

يتبيّن من الترتيب الإلكتروني لذرة الكلور أنها تميل لاكتساب ألكترون واحد لملئ غلافها الخارجي لذلك يكون الكلور في معظم مركباته أحادي التكافؤ والعد التأكسدي له (1-) لأنّه يميل لاكتساب ألكترون واحد لتكوين أيون الكلوريدي السالب (1-).

Why : Chlorine it is monovalent and its oxidation number is (-1) in compounds ?

Ans : Because it tends to gain one electron to form a negative chlorine ion Cl^- .

عل / الكلور في معظم مركباته أحادي التكافؤ والعد التأكسدي له (1-) ؟

ج / لأنّه يميل لاكتساب ألكترون واحد لتكوين أيون الكلوريدي السالب .

Existence of chlorine

Chlorine is not found freely in nature due to high chemical reactivity and readily interaction with other elements to form many of the chlorine compounds.

Sodium chloride $NaCl$ (table salt) is the most common chlorine compound found in nature. It is found in sea water and saline sediments underground.

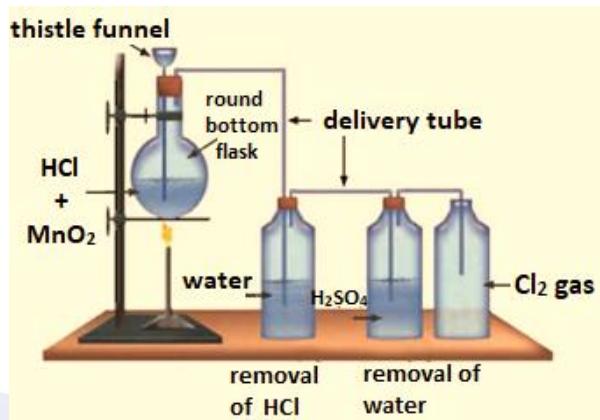
وجوده: لا يوجد الكلور حرّا في الطبيعة لفعاليّته الكيميائية العالية ولاتحاده بسهولة مع غيره من العناصر وتكوينه مركبات الكلور أهمها كلوريدي الصوديوم (NaCl ملح الطعام) الذي يعد أكثر مركبات الكلور انتشارا في الطبيعة فهو يوجد في ماء البحر كما يوجد في الترسّبات الملحيّة تحت سطح الأرض...

Q: Why Chlorine dose not found in nature freely?

Ans: Due to high chemical reactivity and readily interaction with other elements to form many of the chlorine compounds.

س/ لماذا لا يوجد الكلور حرّا في الطبيعة؟

الجواب : لا يوجد الكلور حرّا في الطبيعة لفعاليّته الكيميائية العالية ولاتحاده بسهولة مع غيره من العناصر وتكوينه مركبات الكلور.



Preparation of chlorine

A-- Laboratory Preparation

Q : How can you draw of chlorine in laboratory equipment and the reaction?

Chlorine is prepared in laboratory by oxidizing concentrated hydrochloric acid with manganese (IV) dioxide as shown in the following equation:

The resulting gas is refined from HCl and water by passing it through bottles containing water and sulfuric acid consecutively.

It is observed that manganese (IV) dioxide does not act as a catalyst but it is consumed after the reaction as an oxidizing elements.

يحضر غاز الكلور في المختبر من اكسدة حامض الهيدروكلوريك المركز بواسطة ثاني اوكسيد .

ويخلص الغاز الناتج من غاز HCl والماء (الرطوبة) باماره على قناني حاوية على الماء وحامض الكبريتيك على التوالي .

يلاحظ ان ثاني اوكسيد المنقذ في هذه التجربة لا يسلك سلوك عامل مساعد وانما يُستهلك بعد انتهاء التفاعل فهو يسلك كعامل مؤكسد

Explain: The resulting gas passing it through bottles containing water and sulfuric acid consecutively ?

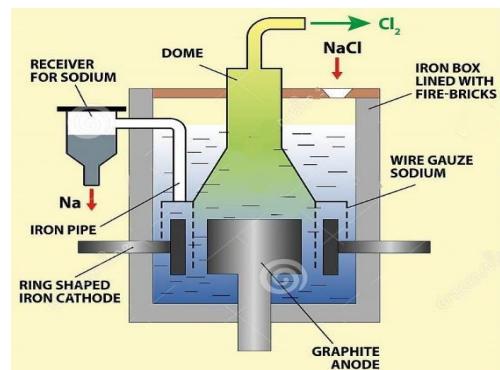
Ans : To refined from HCl and water.

Explain : The manganese (IV) oxide does not act as a catalyst?

Ans : Because it is consumed after the reaction

عل : يمرر غاز الكلور المحضر مختربا على قناني حاوية على الماء وحامض الكبريتيك ؟

الجواب : لتخلصه من غاز كلوريد الهيدروجين والماء (الرطوبة) .


عل : يعتبر ثاني اوكسيد المنقذ عامل مؤكسد وليس عامل مساعد في تجربة تحضير غاز الكلور في المختبر ؟

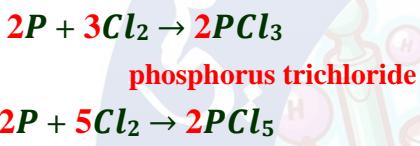
الجواب : لأنه يُستهلك بعد انتهاء التفاعل .

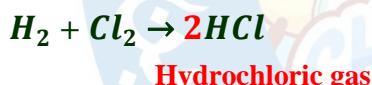
B -- Industrial Preparation

Q: How to prepare Chlorine industrially?

Chlorine is prepared industrially through electrolysis of sodium chloride in water or molten sodium chloride in the electrolytic cell.

تحضير الكلور صناعياً : يحضر غاز الكلور صناعياً بالتحليل الكهربائي لمحلول كلوريد الصوديوم في الماء او لمنصهر كلوريد الصوديوم خلية في التحليل الكهربائي




Properties of Chlorine

Q: What are the properties of chlorine gas ?

- 1 It has greenish Yellow color.
- 2 Chlorine gas is collected by pushing air **upward**. This indicates that chlorine gas is heavier than air.
- 3 It is less soluble in water under normal temperature.
- 4 It has suffocating odor, it attacks mucous membranes of the nose, throat, and when inhaled in large quantities, it **causes** death.
- 5 It reacts with highly active metals like heated sodium forming Sodium Chloride, an ionic compound. $2Na + Cl_2 \longrightarrow 2NaCl$
- 6 Chlorine gas reacts strongly with **non metals** like phosphorous forming phosphorous chlorides which are covalent compounds:

- 7 Chlorine gas reacts with hydrogen to form hydrogen chloride, as in the following equation:

خواص الكلور:

1. لونه أخضر مصفر . 2. يتم جمع الغاز بازاحة الهواء إلى الأعلى مما يدل على أن غاز الكلور أثقل من الهواء.
3. غاز قليل الذوبان في الماء بدرجة الحرارة الاعتيادية.
4. يمتاز غاز الكلور برائحته الحاذقة فهو يهاجم الانسجة المخاطية للأنف والبلعوم وعند استنشاقه بكمية كبيرة يؤدي إلى الموت.
5. يتفاعل غاز الكلور بشدة مع الفلزات الفعالة مثل الصوديوم المسخن مكوناً كلوريد الصوديوم NaCl الذي هو مركب أيوني .
6. يتفاعل غاز الكلور بشدة مع اللافزات مثل الفسفور مكوناً كلوريدات الفسفور التي هي مركبات تساهمية.
7. يتحد غاز الكلور مع غاز الهيدروجين مكوناً غاز كلوريد الهيدروجين.

Q : How to prove that chlorine gas is heavier than air ?

Ans: Gas is collected by discharging air above, which indicates that chlorine is heavier than air.

سؤال : كيف تثبت ان غاز الكلور أثقل من الهواء ؟

الجواب : يتم جمع الغاز بازاحة الهواء إلى الأعلى مما يدل على أن غاز الكلور أثقل من الهواء.

Q : when chlorine gas inhaled in large quantities, it **causes** death?

Ans : Point (4)

Q: What are the uses of chlorine gas?

- 1 Used to sterilize drinking water and swimming pools.
- 2 Chlorine compounds are used in the preparation of **some** medical drugs.
- 3 Chlorine gas is used in the combination of many industrial organic solvents like chloroform $CHCl_3$, methyl dichloride CH_2Cl_2 and carbon tetrachloride CCl_4 .
- 4 Chlorine is used in bleaching and sterilization of tissues of vegetable colors.
- 5 Chlorine is used to bleach the colors of clothes, **especially** cotton clothes.

1. تستعمل في تعقيم مياه الشرب واحواض السباحة.
2. تستخدم بعض مركبات الكلور في تحضير بعض العقاقير الطبية.
3. يدخل الكلور في تركيب كثير من المذيبات العضوية الصناعية مثل الكلوروفورم وثنائي كلوريد المثيل . ورباعي كلوريد الكاربون.
4. يستعمل الكلور في قصر الوان النباتية حيث يعمل كفاسر ومعقم.
5. يستعمل الكلور في قصر الوان الملابس القطنية بصورة خاصة .

Q : Why , chlorine gas dose not bleach natural silk and wool?

Ans : Because it damages them.

عل : لا يستعمل الكلور في قصر الصوف والحرير الطبيعي ؟ **الجواب :** لأنها يتلفها.

Q : How does chlorine bleaching plant colors?

Ans : Chlorine reacts with water when dissolve slowly under normal temperatures and reacts quickly in sunlight. It reacts with water to produce oxygen in its atomic state; this is why it is called **atomic oxygen**. A highly active substance which removes vegetable colors (bleach them), killing germ sand sterilize. As the following equation:

الجواب : غاز الكلور يتفاعل ببطء مع الماء في درجات الحرارة الاعتيادية ببطء ويسرعا في ضوء الشمس متعدا مع الماء محراً الاوكسجين في حالتها الذرية لذلك يسمى الاوكسجين الذري والذي يمتاز بأنه فعال جدا حيث يقوم بازالة الالوان النباتية (قصرها) وقتل الجراثيم والتعقيم.

Q : Explain the experiment of the process of bleaching plant colors.

- 1 Try to put a colorful flower or a plant leave in a bottle of dry chlorine gas. You cannot see a clear change.
- 2 Make the flower or the leave **wet**, then put them in the gas bottle and leave them for some time. You can see that their colors fade away which in turn signal the ability of chlorine to bleach colors of plants .

سؤال : بين بالتجربة أن غاز الكلور قادر على قصر الالوان النباتية ؟

1. عند وضع زهرة ملونة أو ترك نبات في زجاجة من غاز الكلور الجاف لا نلاحظ رؤية تغير واضح.

2. عند وضع زهرة ملونة او ورقة نباتية بعد ترطيبها بالماء في قبضة فيها غاز الكلور وتركها مدة نشاهد زوال اللون مما يدل على ان غاز الكلور يقصر الالوان النباتية .

Why: Water is so essential to the process of bleaching.

Ans : Because the atomic oxygen forms during the process which bleach the colors .

سؤال : للماء أهمية كبيرة في عملية الضرر ؟ **الجواب :** حيث يتكون الاوكسجين الذي يقوم بعملية قصر الالوان .

Q: What is a calcium hypochlorite ? What is its chemical formula? What is the use?

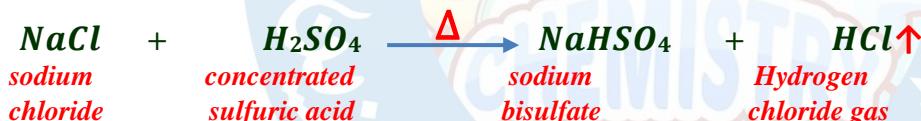
Ans : Is one of chloride compounds which is the active substance for the bleaching

powder and the chemical formula is $Ca(OCl)_2$, used for bleaching and purification.

س/ ما هو هايبيوكلورات الكالسيوم؟ وما هي صيغته الكيميائية؟ وما هو استخدامه؟

الجواب: هو المادة الفعالة لمسحوق القصر وصيغته الكيميائية $Ca(OCl)_2$. ويستخدم في عملية التبييض والتنقية.

Hydrogen chloride gas


Hydrogen chloride gas is not found freely in nature , but it is found in gastric juice as hydrogen chloride acid solution which helps digestion of proteins .

الذى يساعد فى هضم البروتينات

Q : How can you produced hydrogen chloride gas in laboratory draw of equipment and the reaction?

HCl gas can be prepared in the laboratory by the reaction of concentrated sulfuric acid

H_2SO_4 with sodium chloride $NaCl$ as in the following equation:

ملاحظة : إذا كان الرسم
غير واضح راجع صفحة
98 بالكتاب

An appropriate amount of approximately (10mg) of pure sodium chloride is put in a glass flask.

The cover of the flask has two tubes, one and the other goes down to the **bottom** of the flask and the other goes to a **glass bottle**. Concentrated sulfuric acid **is** put in the **glass bottle** and the connecting tube goes down the acid. Another connecting tube connects the glass bottle with a **dry gas collecting bottle**.

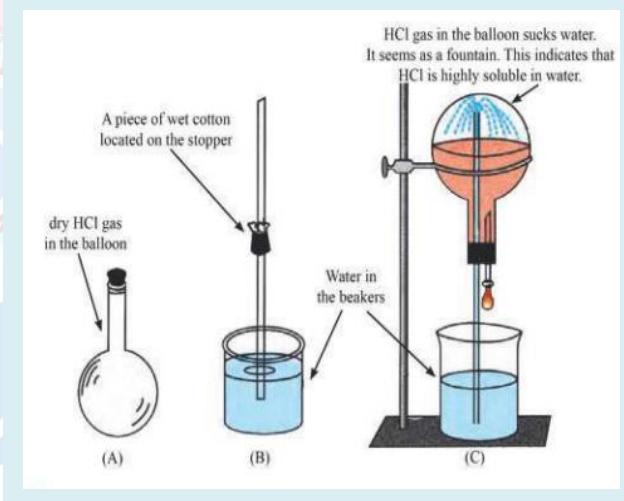
Concentrated sulfuric acid is added to the flask added to the flask through the tube as to cover the salt. Heating the flask slowly causes a reaction that releases hydrogen chloride gas.

يمكن تحضير غاز HCl في المختبر بواسطة تفاعل حامض الكبريتيك المركز مع كلوريد الصوديوم. نضع كمية مناسبة (10mg) تقريبا من كلوريد الصوديوم النقي في دورق زجاجي ذو سداد يخترقه أنبوبان الأول يمتد إلى قعر الدورق والثاني أنبوب توصيل يمتد إلى قنينة زجاجية تحتوي حامض الكبريتيك المركز بحيث تتدفق نهاية الأنبوب بالحامض. ومن هذه القنينة يخرج أنبوب توصيل آخر يمتد إلى قنينة جمع الغاز الجاف . يسكب في الأنبوب المقمع حامض الكبريتيك المركز بحيث يغطي الملح . يسخن الدورقة بهدوء نلاحظ حدوث تفاعل مصهوب بانبعاث غاز كلوريد الهيدروجين.

Q: What are the most important properties of hydrogen chloride?

- 1 It is a colorless gas of suffocation odor.
- 2 It is heavier than air and can be collected by removing air upward.
- 3 The aqueous solution of hydrogen chloride is acidic in effect and it is called Hydrochloric Acid . It changes the blue color of litmus paper into red.
- 4 It highly soluble in water .
- 5 Hydrochloric acid reacts with iron fillings to form iron chloride (II) and release hydrogen gas according to the following equation:

- 6 It is nonflammable and does not instigate combustion.


1. غاز عديم اللون ويمتاز ببرائحة خانقة نفاذة . 2. انقل من الهواء يجمع بازاحة الهواء الى الاعلى.
3. المحلول المائي لغاز كلوريد الهيدروجين حامضي التأثير على الدلائل ويسمى حامض الهيدروكلوريك، حيث يغير لون ورقة زهرة الشمس الزرقاء الى اللون الاحمر. 4. كثير الذوبان في الماء.
5. يتفاعل غاز كلوريد الهيدروجين مع برادة الحديد مكونا كلوريد الحديد (II) ومحررا غاز الهيدروجين
6. غاز لا يشتعل ولا يساعد على الاشتعال.

Q: How can prove to hydrogen chloride highly soluble in water ?

Ans : A gas bottle is sealed with a rubber cover with two holes, a dropper full of water goes through one of the holes and a glass tube goes through the other hole to the bottom pf the gas bottle.

The outer end of the tube is put a water-full bowel with little orange methylene. By squeezing the dropper, the water gushes into the bottle through the bottom-reaching glass tube as a red fountain because of the gas dissolution in the water of the dropper.

This disturbs the pressure inside the gas bottle which is a clear indication of the high solubility of gas in water .

ملاحظة : إذا كان الرسم غير واضح راجع صفحة 99 بالكتاب

سؤال : أثبتت بتجربة ان غاز كلوريد الهيدروجين كثير الذوبان في الماء ؟
 ج : نفق فوهة قنينة تحتوي على غاز بسداد مطاطي ذي ثقبين الثقب الاول تخترقه قطارة يحتوي على ماء ويخترق الثقب الثاني انبوب زجاجي مستدق النهاية يمتد الى قعر قنينة الغاز تقريرا يحتوي على القليل من دليل المثيل البرتقالى . ثم نضغط على القطارة ونلاحظ تدفق الماء بقوة داخل القنينة عن طريق الانبوب الزجاجي الممتد الى قعر الكأس بشكل نافورة ملونة بلون احمر نتيجة لذوبان الغاز في قطرات الماء المحتجزة في القطارة في قنينة الغاز مما يدل على انه كثير الذوبان في الماء..

Q : How can hydrogen chloride gas be detected “ test ”?

A glass tube is put in the solution of **ammonia**. Then then taken out and put again close to a bottle of **hydrogen chloride gas** . A white foggy substance of ammonium chloride forms as a result of the direct union of hydrogen chloride gas with ammonia solution.

Ammonia Hydrogen chloride gas Ammonium chloride

(white foggy substance) مادة ضبابية بيضاء

الكشف عن غاز كلوريد الهيدروجين

يغمر ساق زجاجي في محلول الأمونيا ثم نخرجه ونقربه من فوهة قنية فيها غاز كلوريد الهيدروجين نلاحظ تكون مادة ضبابية بيضاء من كلوريد الأمونيوم ناتجة من اتحاد غاز كلوريد الهيدروجين مع غاز الأمونيا المنبعث من محلول الأمونيا

Note : Similarly, the same means can be used to examine ammonia gas.

ملاحظة : يمكن استخدام هذا التفاعل للكشف عن الأمونيا أيضا.

Q : How can hydrochloric acid be obtained?

Ans : By dissolving hydrogen chloride gas in water .

Q : How can hydrochloric acid be detected?

By adding silver nitrate $AgNO_3$. A white precipitate of silver chloride $AgCl$ results from the reaction as will be shown in the test of chlorides.

الكشف عن حامض الهيدروكلوريك:

بإضافة نترات راسب أبيض من كلوريد الفضة التفاعل الذي سيظهر في فحص الكلوريدات.....

Chlorides

وزاري مهم :

Chlorides are salts of hydrochloric acid. They are formed when a metal or root such as ammonium replaces the hydrogen in the acid as in the equations below

Magnesium hydrochloric acid magnesium chloride hydrogen

*Ammonium Hydrochloric Ammonium water
hydroxide acid chloride*

وهي املاح لحامض الهيدروكلوريك وتنشأ من احلال فلز او جذر كالامونيوم مثلا محل هيدروجين الحامض.

Note: Is also possible to obtain chlorides from the direct reaction of gas chlorine with

metals as in sodium chloride ($NaCl$) and potassium chloride (KCl).

*** يمكن الحصول على الكلوريدات ايضا من الاتحاد المباشر بين غاز الكلور والفلزات كما في كلوريد الصوديوم وكلوريد البوتاسيوم.**

Q : Explain the gradient of dissolution of metal chlorides in water?

Ans : All chlorides are soluble in water except for silver chloride ($AgCl$) and mercury (II) chloride ($HgCl_2$).

Lead(II)chloride $PbCl_2$ is soluble only in hot water. It does not dissolve in cold water.

س / بين تدرج ذوبان كلوريدات الفلزات في الماء ؟

ج / جميع الكلوريدات قابلة للذوبان في الماء عدا كلوريد الفضة وكلوريد الزئبق أما كلوريد الرصاص فيذوب في الماء الحار ولا يذوب في الماء البارد.

Test of chlorides

Q : The insolubility of silver chloride in water is a very useful , Why ?

Ans : The insolubility of silver chloride in water is a very useful ways of testing chlorides.

الكشف عن الكلوريدات : عدم ذوبان كلوريد الفضة في الماء يستفاد منه كوسيلة للكشف (الاستدلال) عن الكلوريدات.

Q : How can you test of chlorides ?

By adding silver nitrate $AgNO_3$ to its solutions such as sodium chloride solution and hydrogen chloride solution. A white precipitate of insoluble silver chloride is formed in the ammonia solution as in the equations below:

سؤال : كيف يمكن الكشف عن الكلوريدات ؟

اضافة محلول نترات الفضة الى محلالها الرائقة حيث يتكون راسب ابيض من كلوريد الفضة القابل للذوبان في محلول الامونيا.

Chapter questions

9

Q1. How many electrons are there in VIIA group elements on the outermost energy level .**Ans : " seven "**

Q2 . Do VIIA group elements gain or lose electrons when they want outer shell to make full .**Ans : Gain one electron .**

Q3 . What is the reactions of Chlorine gas?**Ans : Page " 138 "**

Q4 . Choice the correct answer;**①) Which compound is important for human life**a) Calcium Chloride b) **Sodium Chloride**

c) Potassium Chloride d) Magnesium Chloride.

Ans : (b)

4. اختر الإجابة الصحيحة ① . أي مركب مهم للحياة البشرية :

(أ) كلوريد الكالسيوم (ب) كلوريد الصوديوم (ج) كلوريد البوتاسيوم (د) كلوريد المغنيسيوم

②) which color differ chlorine gas from other gases;a) red b) green c) Yellow d) **greenish yellow .****Ans : (d)**

2. أي لون يختلف عن غاز الكلور من غازات أخرى ؟

(أ) أحمر (ب) أخضر (ج) أصفر (د) أصفر مخضر

③) when Chlorine atom combine with Sodium atom, how many electron gain ?

ج) عندما تتحد ذرة الكلور مع ذرة الصوديوم ، كم الإلكترون يكسب.

a) 1 b) 2 c) 3 d) 4 .

Ans : (a)

Q5. Complete the following reactions;**Solution***Answer*

$MnO_2 + HCl \rightarrow$	$4HCl + MnO_2 \rightarrow MnCl_2 + 2H_2O + Cl_2 \uparrow$
$NaCl(l) \rightarrow$	$2NaCl(l) \rightarrow 2Na + Cl_2$
$Fe + HCl \rightarrow$	$Fe + 2HCl \rightarrow FeCl_2 + H_2 \uparrow$
$Mg + HCl \rightarrow$	$Mg + 2HCl \rightarrow MgCl_2 + H_2$
$H_2 + Cl_2 \rightarrow$	$H_2 + Cl_2 \rightarrow 2HCl$
$NH_4OH + HCl \rightarrow$	$NH_4OH + HCl \rightarrow NH_4Cl + H_2O$

Q6. Explain the reasons of followings;

1 Chlorine gas has single bond as $NaCl$.

Ans: Because it tends to gain one electron to fill it's outer shell .

2 Chlorine gas bleaches herbal textile product in the water.

Ans : Because when it reacts with water it's produce oxygen in its atomic state. A highly active substance which removes vegetable colors (bleach them).

3 When concentrated hydrogen chloride approached to a bottle of ammonia solution, a foggy substance is formed.

Ans : Because the direct union of hydrogen chloride gas with ammonia solution.

4 Chlorine is not found freely in nature?

Ans : Because it high chemical reactivity and readily interaction with other elements to form many of the chlorine compounds.

Q7 . Which methods are used determining of following substance;

a) Hydrochloric acid .

Ans : Page " 142 "

b) Hydrogen chlorine gas .

Ans : Page " 142 "

Q8 . What is chlorides? Write down necessary reactions to obtain magnesium chloride and ammonium chloride .

Ans : Chlorides are salts of hydrochloric acid. They are formed when a metal or root such as ammonia replaces the hydrogen in the acid .

Q9 . Write important usages of chlorine gas.

Ans : Page " 139 "

Q10: Explain the preparation of Chlorine gas in laboratory by writing chemical equation and drawing its figure.

Ans : Page " 137 "


Calcium 40.078 2-8-8-2	Scandium 44.95908 2-8-9-2	Titanium 47.867 2-8-1-2	Vanadium 50.945 2-8-1-2	Chromium 51.961 2-8-1-1	Manganese 54.93804 2-8-1-2	Iron 55.845 2-8-4-2	Cobalt 58.933 2-8-3-2	Nickel 58.493 2-8-6-2	Copper 63.546 2-8-1-1	Zinc 65.38 2-8-8-3	Gallium 69.723 2-8-8-3	Germanium 72.630
38 Sr Strontium 87.62 2-8-18-2	39 Y Yttrium 88.90584 2-8-18-9-2	40 Zr Zirconium 91.224 2-8-18-10-2	41 Nb Niobium 92.90437 2-8-18-9-2	42 Mo Molybdenum 95.95 2-8-18-13-1	43 Tc Technetium (98) 2-8-18-13-2	44 Ru Ruthenium 101.07 2-8-18-15-1	45 Rh Rhodium 102.91 2-8-18-16-1	46 Pd Palladium 104.62 2-8-18-18	47 Ag Silver 107.89 2-8-18	48 Cd Cadmium 112.41 2-8-18-18-2	49 Sn Tin 118.710 2-8-18-18-2	50 Ge Germanium 72.630
56 Ba Barium 137.327 2-8-18-8-2	57-71 Lanthanides	72 Hf Hafnium 178.49 2-8-18-32-10-2	73 Ta Tantalum 180.94788 2-8-18-32-11-2	74 W Tungsten 183.84 2-8-18-32-12-2	75 Re Rhenium 184.21 2-8-18-32-12-2	76 Os Osmium 190.23 2-8-18-32-12-2	77 Ir Iridium 191.24 2-8-18-32-12-2	78 Pt Platinum 195.08 2-8-18-32-12-2	79 Au Gold 196.967 2-8-18-32-12-2	80 Pd Palladium 198.21 2-8-18-32-12-2	81 Ag Silver 200.59 2-8-18-32-12-2	82 Ca Cadmium 204.21 2-8-18-32-12-2
88 Ra Radium 226.025 2-8-18-32-18-2	89-103 Actinides	104 Rf Rutherfordium 261.002 2-8-18-32-18-2	105 Db Dubnium 262.001 2-8-18-32-18-2	106 Sg Seaborgium 263.001 2-8-18-32-18-2	107 Bh Bhertium 264.001 2-8-18-32-18-2							

Third grade

Chemistry

ماراتس المخزون وثانوية كلية بغداد

Part Two

السُّوْفَى: فَاتَّحْ الْعَمَى

لن نميز مع المميزين

Ununtrium (212) Actinides [72-8-18-32-1-2]	Rf Rutherfordium (267) [72-8-18-32-32-1-2]	104 Db Dubnium (268) [72-8-18-32-32-17-2]	105 Sg Seaborgium (269) [72-8-18-32-32-17-2]	106 Bh Bhertium (270) [72-8-18-32-32-17-2]	107 Hs Hassium (271) [72-8-18-32-32-17-2]	108 Mt Moscovium (272) [72-8-18-32-32-17-2]	109 Ds Darmstadtium (273) [72-8-18-32-32-17-2]	110 Rg Roentgenium (274) [72-8-18-32-32-17-2]	111 Cn Copernicium (285) [72-8-18-32-32-17-2]	112 Nh Nhastium (286) [72-8-18-32-32-17-2]	113 Fl Florium (287) [72-8-18-32-32-17-2]	114 Mc Meitnerium (290) [72-8-18-32-32-35-5]	115 Lv Livermorium (293) [72-8-18-32-32-37-4]	116 Ts Tennessine (294) [72-8-18-32-37-37-7]	117 At Astatine (209) [72-8-18-32-32-1-2]	118 Og Oganesson (294) [72-8-18-32-32-1-2]
Ununpentium (295) Actinides [72-8-18-32-1-2]	W Tungsten (183.84) [72-8-18-32-12-2]	101 Ru Ruthenium (101.07) [72-8-18-15-1]	102 Rh Rhodium (102.91) [72-8-18-16-1]	45 Pd Palladium (104.42) [72-8-18-18]	46 Ag Silver (107.87) [72-8-18-18-1]	47 Cd Cadmium (112.41) [72-8-18-18-2]	48 In Indium (114.82) [72-8-18-18-3]	49 Tl Thallium (204.38) [72-8-18-32-1-2]	50 Sn Tin (118.71) [72-8-18-18-4]	51 Sb Antimony (121.76) [72-8-18-18-5]	52 Te Tellurium (127.60) [72-8-18-18-6]	53 I Iodine (126.90) [72-8-18-18-7]	54 Xe Xenon (131.29) [72-8-18-18-8]	55 Br Bromine (79.904) [72-8-18-18-9]	56 Rn Radium (222) [72-8-18-18-10]	
Ununhexium (296) Actinides [72-8-18-32-1-2]	Os Osmium (190.21) [72-8-18-32-12-2]	75 Re Rhenium (191.21) [72-8-18-32-12-2]	76 Ir Iridium (192.22) [72-8-18-32-12-2]	77 Pt Platinum (191.08) [72-8-18-32-12-2]	78 Au Gold (194.97) [72-8-18-32-12-1]	79 Hg Mercury (200.59) [72-8-18-32-12-1]	80 Tl Thallium (204.38) [72-8-18-32-1-2]	81 Pb Lead (207.2) [72-8-18-32-1-2]	82 Bi Bismuth (208.98) [72-8-18-32-1-2]	83 Po Polonium (209) [72-8-18-32-1-2]	84 At Astatine (210) [72-8-18-32-1-2]	85 At Radium (222) [72-8-18-32-1-2]				
Ununseptium (297) Actinides [72-8-18-32-1-2]	Ru Ruthenium (101.07) [72-8-18-15-1]	103 Os Osmium (190.21) [72-8-18-32-12-2]	104 Ir Iridium (192.22) [72-8-18-32-12-2]	105 Pt Platinum (191.08) [72-8-18-32-12-2]	106 Au Gold (194.97) [72-8-18-32-12-1]	107 Hg Mercury (200.59) [72-8-18-32-12-1]	108 Tl Thallium (204.38) [72-8-18-32-1-2]	109 Pb Lead (207.2) [72-8-18-32-1-2]	110 Bi Bismuth (208.98) [72-8-18-32-1-2]	111 Po Polonium (209) [72-8-18-32-1-2]	112 At Astatine (210) [72-8-18-32-1-2]	113 At Radium (222) [72-8-18-32-1-2]				